IDEAS home Printed from
   My bibliography  Save this article

Implementing likelihood-based inference for fat-tailed distributions


  • Rekkas, M.
  • Wong, A.


The theoretical advancements in higher-order likelihood-based inference methods have been tremendous over the past two decades. The application of these methods in the applied literature however has been far from widespread. A critical barrier to adoption has likely been the computational difficulties associated with the implementation of these methods. This paper provides the applied researcher with a systematic exposition of the calculations and computer code required to implement the higher-order conditional inference methodology of Fraser and Reid [1995. Utilitas Mathematica 47, 33-53] for problems involving heavy- or fat-tailed distributions.

Suggested Citation

  • Rekkas, M. & Wong, A., 2008. "Implementing likelihood-based inference for fat-tailed distributions," Finance Research Letters, Elsevier, vol. 5(1), pages 32-46, March.
  • Handle: RePEc:eee:finlet:v:5:y:2008:i:1:p:32-46

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:5:y:2008:i:1:p:32-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.