IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v92y2015ip1p67-76.html
   My bibliography  Save this article

Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler

Author

Listed:
  • Modliński, Norbert

Abstract

The paper describes numerical simulations of flow with combustion in a coal-fired grate boiler. The work focuses on the NOx reduction process utilizing SNCR (selective non-catalytic reduction) technology. An integration of 12-step reduced mechanism with commercial CFD (computational fluid dynamics) code was presented. The SNCR reaction chemistry was fully coupled with the turbulent fluid mechanics and heat transfer via user-defined interface. The reduced mechanism was compared to 7-step global model which is commonly used in CFD codes. The comparison was done in the first step via plug-flow calculations. A better performance of 12-step reduced mechanism was demonstrated. Second stage of comparison was done with the CFD code. Final NO prediction at the boiler outlet for both mechanisms is similar and sufficiently accurate in relation to measurement. Nonetheless contours of NO concentrations suggest different NO rate in the initial stages of reduction. A similar trend was observed for secondary reactants NH3, HNCO. Large differences in calculated values at the outlet were observed. Disparity in secondary pollutants predictions is also observed. The general trend in NH3, N2O, HNCO and CO predictions was similar as in the plug flow calculations. These results suggest necessity of more detailed verification in a pilot or industrial scale to evaluate which mechanism is more accurate for coupled fluid dynamics computations.

Suggested Citation

  • Modliński, Norbert, 2015. "Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler," Energy, Elsevier, vol. 92(P1), pages 67-76.
  • Handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:67-76
    DOI: 10.1016/j.energy.2015.03.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:67-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.