IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp538-547.html
   My bibliography  Save this article

Analytical solution and experimental measurements for temperature distribution prediction of three-phase direct-contact condenser

Author

Listed:
  • Mahood, Hameed B.
  • Sharif, A.O.
  • Al-Aibi, S.
  • Hawkins, D.
  • Thorpe, R.

Abstract

An experimental and analytical investigation for the temperature distribution prediction of a three-phase bubble-type direct-contact condenser conducted, using a short Perspex column with 4 cm internal diameter and 70 cm height as a direct contact condenser. Vapour pentane and water were exploited as dispersed phase and continuous phase respectively. The effect of mass flow rate ratio (43.69%, 22.97%, 12.23%, 8.61% and 6.46%) and initial dispersed phase temperature (37.6 °C, 38.4 °C and 41.7 °C) on the direct contact condenser output were studied. Linear temperature distributions along direct contact condensers were found experimentally, except at mass flow rate ratio 43.69% and with less magnitude at 22.97%, for different initial vapour temperatures, while theoretically this behaviour is purely linear. The results showed that the mass flow rate ratio and the hold up have a dominant effect on the direct contact condenser output. On the other hand, the initial vapour temperature had a slight effect on the direct contact condenser output temperature which indicates that the latent heat is controlled in the exchange process. The analytical model is based on the one-dimensional mass and energy equations. New expressions for average heat transfer coefficient and two-phase bubbles relative velocity are derived implicitly. Furthermore, the model correlated very well against experimental data obtained.

Suggested Citation

  • Mahood, Hameed B. & Sharif, A.O. & Al-Aibi, S. & Hawkins, D. & Thorpe, R., 2014. "Analytical solution and experimental measurements for temperature distribution prediction of three-phase direct-contact condenser," Energy, Elsevier, vol. 67(C), pages 538-547.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:538-547
    DOI: 10.1016/j.energy.2013.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    2. Paweł Madejski & Piotr Michalak & Michał Karch & Tomasz Kuś & Krzysztof Banasiak, 2022. "Monitoring of Thermal and Flow Processes in the Two-Phase Spray-Ejector Condenser for Thermal Power Plant Applications," Energies, MDPI, vol. 15(19), pages 1-22, September.
    3. Fei, Yu & Xiao, Qingtai & Xu, Jianxin & Pan, Jianxin & Wang, Shibo & Wang, Hua & Huang, Junwei, 2015. "A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger," Energy, Elsevier, vol. 93(P2), pages 2313-2320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:538-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.