Author
Listed:
- Wang, Haonan
- Zhao, Hang
- Zhan, Keyi
- Liu, Wei
- Li, Ming
- Song, Zhiping
Abstract
The accuracy of thrust estimators decreases in practical applications due to performance variations among individual gas turbine engines. Correcting the thrust estimator is challenging due to the limited availability of engine test data. To address this issue, this study proposes a digital twin-driven thrust estimation framework, which comprises an individual performance difference identification (IPDI) module, a model deduction module, and a fine-tuning module. The IPDI module identifies the individual difference characteristics of the target engine, which are quantified as the individual quantification parameter (IQP). First, the IPDI module uses the underdetermined feature expansion layer to expand available features. Subsequently, it estimates the IQPs using a physics-informed multi-layer perceptron (PIMLP). Finally, the perturbation-based post-adjustment layer refines the PIMLP's output by integrating all available ground test data. Using the estimated IQPs, the model deduction module generates virtual full-envelope data for the target engine, which is then used to fine-tune the benchmark thrust estimator. Simulation results indicate that the fine-tuned thrust estimator achieves a mean relative error of 0.0548 %, compared to 0.9741 % for the benchmark estimator. Micro turbojet engine experiments demonstrate that the fine-tuned estimator achieves a mean relative error of 0.9117 %, significantly lower than 6.1164 % of the benchmark estimator.
Suggested Citation
Wang, Haonan & Zhao, Hang & Zhan, Keyi & Liu, Wei & Li, Ming & Song, Zhiping, 2025.
"Thrust estimation in limited ground test data scenarios: A digital twin-driven method for gas turbines with performance variability,"
Energy, Elsevier, vol. 336(C).
Handle:
RePEc:eee:energy:v:336:y:2025:i:c:s0360544225040563
DOI: 10.1016/j.energy.2025.138414
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:336:y:2025:i:c:s0360544225040563. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.