Author
Listed:
- Bayer, Michael
- Meister, Curtis
- Schuetz, Philipp
- Villasmil, Willy
- Walter, Heimo
- Dahash, Abdulrahman
Abstract
This study introduces an efficient simulation model for large-scale pit seasonal thermal energy storage (PTES) applications, designed to retain accuracy while significantly reducing computational demands. Being implemented in Modelica/Dymola, the reduced-order model is compared against an experimentally validated COMSOL Multiphysics simulation model based on key performance indicators including energy balance, thermal losses, temperature stratification and computational time. Energy balances of both models show good agreement, with deviations of less than 6 % in terms of charged energy and under 5 % in discharged energy. Total thermal losses align closely, with discrepancy below 2 %, underscoring the model's reliability. Temperature stratification analysis reveals strong alignment of both models under idle conditions, especially in the upper layers of the storage. During dynamic charging and discharging phases, minor discrepancies are observed, with root mean square error values ranging from 1.2 K in the upper layers to 2.4 K at the bottom. Additionally, the reduced-order model demonstrates a substantial reduction in computational time, making it up to 98 % faster than the COMSOL model. The model is therefore established as a highly efficient yet accurate tool for large-scale sTES simulations, particularly suited for iterative system design, optimization processes, and real-time control.
Suggested Citation
Bayer, Michael & Meister, Curtis & Schuetz, Philipp & Villasmil, Willy & Walter, Heimo & Dahash, Abdulrahman, 2025.
"Development of a reduced-order dynamic model for large-scale seasonal thermal energy storage applications,"
Energy, Elsevier, vol. 333(C).
Handle:
RePEc:eee:energy:v:333:y:2025:i:c:s036054422503021x
DOI: 10.1016/j.energy.2025.137379
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:333:y:2025:i:c:s036054422503021x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.