Author
Listed:
- Arabgolarcheh, Alireza
- De Vanna, Francesco
- Micallef, Daniel
Abstract
The need to reduce the levelized energy cost of floating offshore wind turbines has spurred interest in scaling up rotor blades. However, this approach poses challenges related to material strength, manufacturing, and logistical hurdles in transportation. An emerging alternative is multi-rotor configurations on a single platform and tower structure. The present study concerns floating multi-rotor wind turbines operating under surge conditions. A comprehensive characterization of rotor and blade loads, power generation dynamics, and a thorough frequency domain analysis are performed within an actuator line model coupled with the OpenFOAM® Navier–Stokes solver. Results show that global loads and power generation associated with a multi-rotor configuration exhibit variability contingent upon blade azimuth and surge displacement, but heightened rotor power and loads compared to single-rotor configurations. Frequency analysis unveils the dominance of the surge frequency alongside the presence of secondary peaks attributed to rotor-to-rotor interactions. The angle of attack is shown to be primarily influenced by surge motion rather than inter-rotor interactions, underscoring the impact of platform motions on load dynamics. The outcomes of this study have significant implications for designing and optimizing multi-rotor wind turbines, particularly in mitigating load-induced fatigue effects, rendering this work a basis for further efforts in this field.
Suggested Citation
Arabgolarcheh, Alireza & De Vanna, Francesco & Micallef, Daniel, 2025.
"Offshore multi-rotor wind turbines: Blade interactions under surging conditions,"
Energy, Elsevier, vol. 331(C).
Handle:
RePEc:eee:energy:v:331:y:2025:i:c:s0360544225023369
DOI: 10.1016/j.energy.2025.136694
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:331:y:2025:i:c:s0360544225023369. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.