IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v330y2025ics0360544225023722.html
   My bibliography  Save this article

Towards sustainable and intelligent urban transportation: A novel deep transfer reinforcement learning framework for eco-driving of fuel cell buses

Author

Listed:
  • Huang, Ruchen
  • He, Hongwen
  • Su, Qicong
  • Wu, Jingda

Abstract

Eco-driving is a sustainable technology that optimizes both energy management and speed planning for electrified vehicles. Particularly when combined with emerging deep reinforcement learning (DRL) techniques, eco-driving strategies (EDSs) can be more intelligent. However, current research on eco-driving, namely the holistic solution, lags behind the advancements in its sub-problem namely energy management, and the development of DRL-based EDSs remains time-consuming. Since energy management is a sub-task of eco-driving, it offers a potential way to rapidly develop EDSs by reusing pre-trained energy management strategies (EMSs). Based on this, this paper proposes an expedited method for developing soft actor-critic (SAC) based EDSs for fuel cell buses (FCBs) in the vehicle-following scenario. To ensure that SAC-based EMSs can be effectively transferred to EDSs, an innovative heterogeneous deep transfer reinforcement learning framework is designed. Within this framework, all the knowledge learned in the source EMS can be transferred and reused by the target EDS. More importantly, the transferability of heterogeneous deep neural networks and heterogeneous experience replay buffers is particularly verified. Simulation results show that the proposed framework provides a 71.01 % acceleration in convergence speed and a 7.30 % improvement in fuel economy. This article contributes to correlating different optimization tasks of FCBs through advanced artificial intelligence technologies.

Suggested Citation

  • Huang, Ruchen & He, Hongwen & Su, Qicong & Wu, Jingda, 2025. "Towards sustainable and intelligent urban transportation: A novel deep transfer reinforcement learning framework for eco-driving of fuel cell buses," Energy, Elsevier, vol. 330(C).
  • Handle: RePEc:eee:energy:v:330:y:2025:i:c:s0360544225023722
    DOI: 10.1016/j.energy.2025.136730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225023722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:330:y:2025:i:c:s0360544225023722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.