IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v329y2025ics0360544225023813.html
   My bibliography  Save this article

A novel hybrid ensemble approach for wind speed forecasting with dual-stage decomposition strategy using optimized GRU and transformer models

Author

Listed:
  • Ullah, Sajid
  • Chen, Xi
  • Han, Han
  • Wu, Junhao
  • Dong, Jinghan
  • Liu, Ruiqing
  • Ding, Weijie
  • Liu, Min
  • Li, Qingli
  • Qi, Honggang
  • Huang, Yonggui
  • Yu, Philip Lh

Abstract

Wind energy has attracted global interest owing to its sustainable and environmentally friendly characteristics. Nevertheless, precisely forecasting wind speed can be challenging due to its volatile and unpredictable nature. This paper presents a new hybrid forecasting approach based on dual stage decomposition mechanism, namely TMQGDT for wind speed prediction. At first, a decomposition technique called time-varying filtered based empirical mode decomposition (TVFEMD) is utilized to decompose the original wind speed data into several intrinsic mode functions (IMFs). Afterwards, multi-scale permutation entropy (MPE) is used to assess the complexity of each IMF. Based on the entropy values, the IMFs are further classified into high-frequency and low-frequency IMFs. To address the significant volatility observed in the high-frequency IMFs, discrete wavelet transform (DWT) method is employed to perform secondary decomposition. The low-frequency IMFs are forecasted using gated recurrent unit (GRU) model optimized with quantum particle swarm optimization (QPSO) algorithm, while the high-frequency IMFs are forecasted with the Transformer model. The proposed model is trained and validated using four wind speed time series datasets collected from Germany and China. Five individual models and six hybrid models are compared against the proposed model to validate the forecasting performance of the proposed TMQGDT model. The prediction outcomes reveals that the R2 of the model is 0.973, 0.968, 0.956, and 0.996 on the four dataset test sets, which has improved by 3.39 %, 3.93 %, 5.53 %, and 0.50 %, respectively, compared to the TVFEMD-MPE-QPSO-GRU-DWT-Autoformer model. The excellent accuracy performance of the TMQGDT model indicates that developing a hybrid model based on deep learning techniques using secondary decomposition mechanism and optimization algorithm can enhance the precision of wind speed prediction.

Suggested Citation

  • Ullah, Sajid & Chen, Xi & Han, Han & Wu, Junhao & Dong, Jinghan & Liu, Ruiqing & Ding, Weijie & Liu, Min & Li, Qingli & Qi, Honggang & Huang, Yonggui & Yu, Philip Lh, 2025. "A novel hybrid ensemble approach for wind speed forecasting with dual-stage decomposition strategy using optimized GRU and transformer models," Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:energy:v:329:y:2025:i:c:s0360544225023813
    DOI: 10.1016/j.energy.2025.136739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225023813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:329:y:2025:i:c:s0360544225023813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.