IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v326y2025ics0360544225017244.html
   My bibliography  Save this article

Optimized combustion characteristics in a top-blown converter utilizing a swirling-flow post-combustion oxygen lance

Author

Listed:
  • Liu, Qichang
  • Wang, Jian
  • Liu, Guangqiang
  • Liu, Yuanxin

Abstract

The steel industry is confronted with urgent challenges in the Post-Combustion (PC) phase of converters, such as reduced combustion efficiency, inefficient energy utilization, and high CO emissions. To address these issues, this study presents an innovative technical approach: integrating secondary combustion with swirl composite injection smelting. By leveraging the Swirl-Flow Post-Combustion Oxygen Lance (SFPCL), a comprehensive three-dimensional numerical model of the combustion zone in a top-blown converter has been developed. Using Computational Fluid Dynamics (CFD) techniques combined with a turbulence-chemical reaction coupling model, this study investigates the velocity field, temperature field, component distribution, and Post-Combustion Ratio (PCR) related to the SFPCL. The results indicate that the swirling jet ejected from the primary oxygen nozzle significantly enhances the jet's independent characteristics and effectively reduces the coupling between the primary and secondary jets. The secondary jet's impact area increases, and its impact velocity at H = 1.25 m rises by 39.12 %. As the swirl angle was incremented to 15°, the CO concentration within the converter space diminished by 37.5 %, whereas the CO2 concentration escalated by 42.86 %. Furthermore, the combustion temperature soared by 215K, and the combustion zone area expanded by 36.67 %. At the converter outlet, notable changes were observed: the CO concentration decreased by 2.56 %, the CO2 concentration rose by 2.7 %, and the PCR improved by 3.7 %. These findings underscore that increasing the swirl angle can bolster post-combustion efficiency and mitigate CO emissions. This study offers fresh theoretical underpinnings and practical insights for developing high-efficiency, energy-saving converter steelmaking technologies.

Suggested Citation

  • Liu, Qichang & Wang, Jian & Liu, Guangqiang & Liu, Yuanxin, 2025. "Optimized combustion characteristics in a top-blown converter utilizing a swirling-flow post-combustion oxygen lance," Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:energy:v:326:y:2025:i:c:s0360544225017244
    DOI: 10.1016/j.energy.2025.136082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:326:y:2025:i:c:s0360544225017244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.