IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014537.html
   My bibliography  Save this article

Investigation of transition metal-modified biochar as catalysts in the co-pyrolysis of corn cob and polyethylene for enhanced hydrogen production

Author

Listed:
  • Li, Pan
  • Zhao, Yu
  • Chen, Hai
  • Wang, Peiping
  • Wu, Xingguo
  • Chen, Wei
  • Chang, Chun
  • Pang, Shusheng
  • Hu, Junhao

Abstract

Hydrogen is an important clean energy source for the future and an essential building block for achieving sustainable development plans and net-zero emissions. This study investigates transition metal-modified biochar catalysts and the effect of temperature on the co-pyrolysis of biomass and plastics for hydrogen-rich gas production. Biochar was modified with Ni and Co, and characterized using XRD, SEM, BET, and FT-IR. The catalysts' performance was assessed by analyzing the distribution of solid, liquid, and gaseous products, along with bio-oil and syngas composition. The 10Ni5Co catalyst showed the highest hydrogen production efficiency at 600 °C pyrolysis and 800 °C reforming, with a H2 selectivity of 37.66 % and H2 yield of 15.05 mmol/g. The optimal pyrolysis temperature ensures proper feedstock decomposition, while the reforming temperature enhances catalyst activity. The 10Ni5Co catalyst exhibited excellent stability, with H2 selectivity only decreasing from 37.66 % to 32.01 % after three cycles. Despite structural degradation at 850 °C, biochar modification increased surface area, allowing for higher transition metal loading. These findings are of great practical significance for promoting the application of biochar-based catalysts in the field of hydrogen production from biomass.

Suggested Citation

  • Li, Pan & Zhao, Yu & Chen, Hai & Wang, Peiping & Wu, Xingguo & Chen, Wei & Chang, Chun & Pang, Shusheng & Hu, Junhao, 2025. "Investigation of transition metal-modified biochar as catalysts in the co-pyrolysis of corn cob and polyethylene for enhanced hydrogen production," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014537
    DOI: 10.1016/j.energy.2025.135811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
    2. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    3. Chang, Chun & Liu, Zihan & Li, Pan & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2021. "Study on products characteristics from catalytic fast pyrolysis of biomass based on the effects of modified biochars," Energy, Elsevier, vol. 229(C).
    4. Fang, Juan & Yang, Miaomiao & Sui, Junpeng & Luo, Tengqi & Yu, Yinsheng & Ao, Yunjin & Dou, Ruifeng & Zhou, Wenning & Li, Wei & Liu, Xunliang & Zhao, Kai, 2024. "Enhancing solar-powered hydrogen production efficiency by spectral beam splitting and integrated chemical energy storage," Applied Energy, Elsevier, vol. 372(C).
    5. Suriapparao, Dadi V. & Hemanth Kumar, Tanneru & Reddy, B. Rajasekhar & Yerrayya, Attada & Srinivas, B. Abhinaya & Sivakumar, Pandian & Prakash, S. Reddy & Sankar Rao, Chinta & Sridevi, Veluru & Desing, 2022. "Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes," Renewable Energy, Elsevier, vol. 181(C), pages 990-999.
    6. Liu, Xuan & Burra, Kiran Raj G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate," Applied Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xiaopeng & Li, Pan & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Chang, Chun & Pang, Shusheng, 2022. "Enhancement of the production of aromatics and bio-syngas from microwave ex-situ pyrolysis based on Zn/Zr modified biochar and multi-catalysts," Energy, Elsevier, vol. 261(PB).
    2. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    3. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    4. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Bangun Adi Wijaya & Wahyu Hidayat & Melya Riniarti & Hendra Prasetia & Ainin Niswati & Udin Hasanudin & Irwan Sukri Banuwa & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2022. "Meranti ( Shorea sp.) Biochar Application Method on the Growth of Sengon ( Falcataria moluccana ) as a Solution of Phosphorus Crisis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    7. Fan, Xudong & Wu, Yujian & Sun, Yan & Tu, Ren & Ren, Zhipeng & Liang, Kaili & Jiang, Enchen & Ren, Yongzhi & Xu, Xiwei, 2022. "Functional groups anchoring-induced Ni/MoOx-Ov interface on rice husk char for hydrodeoxygenation of bio-guaiacol to BTX at ambient-pressure," Renewable Energy, Elsevier, vol. 200(C), pages 579-591.
    8. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    9. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    10. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    11. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    12. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    13. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    14. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Yue, Xia & Chen, Dezhen & Luo, Jia & Xin, Qianfan & Huang, Zhen, 2020. "Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources," Applied Energy, Elsevier, vol. 268(C).
    16. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    17. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    18. Wang, Biao & Chen, Yasen & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field," Energy, Elsevier, vol. 293(C).
    19. Zhu, Liya & Mao, Jinxin & Du, Jinyang & Han, Fengshuang & Zhao, Kai & Lu, Youjun, 2025. "Decoupling the heating and reduction processes in solar-driven two-step thermochemical cycle by coupling it with thermal power generation," Energy, Elsevier, vol. 324(C).
    20. Mahfud, Mahfud & Ramadhana, Ahmad Habib & Novita, Ninda Ayu & Kurniawansyah, Firman & Sardi, Bambang & Mirzan, Mohamad & Mahmudin, Lufsyi & Ali, Amar Akbar & Indrawan, Natarianto, 2025. "Cleaner production of bio-oil from macroalgae and low-rank coal mixture by pyrolysis in a microwave reactor integrated with a distillation column," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.