Cooperative optimization of cooling units arrangement on gas turbine endwall with generating adversarial network-based surrogate models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135809
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
- Hu, Jingyu & Zhang, Yanfeng & Zhang, Jianshe & Kong, Xiangcan & Zhu, Miaoyi & Zhu, Junqiang, 2024. "Numerical investigation of flow and heat transfer on turbine guide vane leading edge slot film cooling," Energy, Elsevier, vol. 309(C).
- Li, Bingran & Liu, Cunliang & Ye, Lin & Zhou, Tianliang & Zhang, Fan, 2024. "Evaluation of film cooling effect in multi-row hole configurations on turbine blade leading edge," Energy, Elsevier, vol. 309(C).
- Hu, Kaibin & Wang, Xiaobo & Zhong, Shengquan & Lu, Cheng & Yu, Bocheng & Yang, Li & Rao, Yu, 2024. "Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Jingwei & Hui, Zhonghao & Zhou, Li & Wang, Zhanxue & Liu, Yongquan, 2025. "Experimental investigation on the cooling performance of multi-row film holes of a serpentine nozzle," Energy, Elsevier, vol. 320(C).
- Joon Ahn, 2025. "Large Eddy Simulation Approaches for Trailing-Edge Heat Transfer in Gas Turbine Blades: A Review," Energies, MDPI, vol. 18(6), pages 1-23, March.
- Li, Haiwang & Wang, Meng & You, Ruquan & Liu, Song, 2023. "Thermal radiation correction formula of the scaling criteria for film cooling of turbine blades," Energy, Elsevier, vol. 282(C).
- Liang Xu & Shenglong Jin & Weiqi Ye & Yunlong Li & Jianmin Gao, 2024. "A Review of Machine Learning Methods in Turbine Cooling Optimization," Energies, MDPI, vol. 17(13), pages 1-26, June.
- Zhang, Fan & Liu, Cunliang & Ye, Lin & Ran, Yuan & Zhou, Tianliang & Yan, Haonan, 2024. "Study on the film superposition method for dense multirow film Hole layouts," Energy, Elsevier, vol. 293(C).
- Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).
- Li, Bingran & Liu, Cunliang & Ye, Lin & Zhou, Tianliang & Zhang, Fan, 2024. "Evaluation of film cooling effect in multi-row hole configurations on turbine blade leading edge," Energy, Elsevier, vol. 309(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014513. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.