IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006838.html
   My bibliography  Save this article

Molecular dynamics study of CH4 adsorption in coal triggered by cyclic thermal treatment

Author

Listed:
  • Lv, Xuefen
  • Li, He
  • Shi, Shiliang
  • Li, Bo
  • Li, Xianzhong
  • Pei, Xiongfei
  • Lu, Jiexin

Abstract

Examining the effect of cyclic thermal treatment on CH₄ adsorption in coal microscopically is crucial for advancing heat injection technology in coal reservoirs to boost production. In this study, we constructed macromolecular structure models of coal pre- and post-heat treatment using elemental analysis, 1³C NMR, and XPS. Materials Studio simulated methane's adsorption, diffusion, and CH₄ molecule distribution near functional groups. Results reveal that Huaibei Coal has a peribridge carbon ratio (XBP) of 0.241 and molecular formula C₁₃₅H₁₁₈N₄O₅S. After cyclic thermal treatment across different temperature gradients, the molecular structure's polycondensation and aromatic carbon ratio rose, the aliphatic carbon ratio fell, and the formula became C₁₂₄H₉₆N₃O₂S. CH₄'s maximum adsorption capacity dropped from 10 to 7, and its diffusion coefficient increased 1.72-fold. This shows cyclic thermal treatment effectively aids methane desorption and diffusion from the coal matrix, reducing gas content and enhancing seam permeability. Moreover, hydroxyl and carbonyl groups notably influence methane diffusion. This paper delves deep into the molecular-level impact of cyclic thermal treatment on coalbed methane adsorption and diffusion.

Suggested Citation

  • Lv, Xuefen & Li, He & Shi, Shiliang & Li, Bo & Li, Xianzhong & Pei, Xiongfei & Lu, Jiexin, 2025. "Molecular dynamics study of CH4 adsorption in coal triggered by cyclic thermal treatment," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006838
    DOI: 10.1016/j.energy.2025.135041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, He & Lv, Xuefen & Lu, Jiexin & Liu, Meng & Yang, Wei & Hong, Yidu & Liu, Ting & Lin, Baiquan & Wang, Zheng, 2024. "Effect of cyclic thermal stimulation on the pore structure and fluid space of coal and inspiration for coalbed methane production," Energy, Elsevier, vol. 289(C).
    2. Huang, Jiliang & Tan, Bo & Gao, Liyang & Fan, Long & Shao, Zhuangzhuang & Wang, Haiyan & Qi, Qingjie, 2024. "Study on the evolution characteristics of molecular surface active sites of low-rank coal in low-temperature oxidation stage," Energy, Elsevier, vol. 294(C).
    3. Wei, Jiaqi & Su, Erlei & Xu, Guangwei & Yang, Yuqiang & Han, Shuran & Chen, Xiangjun & Chen, Haidong & An, Fenghua, 2024. "Comparative analysis of permeability rebound and recovery of tectonic and intact coal: Implications for coalbed methane recovery in tectonic coal reservoirs," Energy, Elsevier, vol. 301(C).
    4. He, Jiawei & Li, He & Yang, Wei & Lu, Jiexin & Lu, Yi & Liu, Ting & Shi, Shiliang, 2023. "Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery," Energy, Elsevier, vol. 283(C).
    5. Yan, Fazhi & Zeng, Tao & Yang, Mengmeng & Peng, Shoujian & Gao, Changjiong & Yang, Yongdan, 2024. "Study on pore-crack evolution and connectivity of coal subjected to controlled electrical pulse based on CT scanning technology," Energy, Elsevier, vol. 296(C).
    6. Wang, Hao & Wang, Liang & Zheng, Siwen & Sun, Yiwei & Shen, Shangkun & Zhang, Xiaolei, 2024. "Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation," Energy, Elsevier, vol. 287(C).
    7. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    8. Liu, Jiaxun & Yang, Xiuchao & Liu, Jianguo & Jiang, Xiumin, 2024. "Microscopic pyrolysis mechanisms of superfine pulverized coal based on TG-FTIR-MS and ReaxFF MD study," Energy, Elsevier, vol. 289(C).
    9. Kuang, Yucen & Xie, Wenhao & Wu, Hongyan & Liu, Xiaoqian & Sher, Farooq & Qiu, Shuxing & Dang, Jie & Zhang, Shengfu, 2024. "Molecular structure of coal macerals and thermal response behavior of their chemical bonds obtained by structural characterizations and molecular dynamics simulations," Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liang & Wu, Songwei & Li, Ziwei & An, Fenghua & Lu, Zhuang & Su, Sheng & Jiang, Changbao, 2024. "Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators," Energy, Elsevier, vol. 305(C).
    2. Sun, Yi & Zheng, Lulin & Liu, Hao & Chen, Zhong lin & Hu, Jinchun & Sun, Wenjibin & Tian, Youwen & Lan, Hong & Zhang, Yiping & Wang, Jin, 2025. "Research on permeability evolution law and gas outburst mechanism of coal near concealed fault," Energy, Elsevier, vol. 318(C).
    3. Zha, Xiaojian & Zhang, Zewu & Zhao, Zhenghong & Yang, Long & Mao, Wenchao & Wu, Fan & Li, Xiaoshan & Luo, Cong & Zhang, Liqi, 2024. "Comparative study on co-firing characteristics of normal and superfine pulverized coal blended with NH3 under the MILD combustion mode," Energy, Elsevier, vol. 305(C).
    4. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    5. Li, Rijun & Wen, Hu & Fan, Shixing & Wang, Hu & Cheng, Xiaojiao & Mi, Wansheng & Liu, Bocong & Liu, Mingyang, 2024. "Migration characteristics of constant elements in the process of coal dissolution by liquid CO2," Energy, Elsevier, vol. 295(C).
    6. Haiying Ren & Zhijun Guo & Honggao Xie & Sijie Han & Xiaozhi Zhou & Lingyun Zhao & Yuanlong Wei & Wenci Qiu, 2024. "Characteristics of the Microfracture and Pore Structure of Middle- and High-Rank Coal and Their Implications for CBM Exploration and Development in Northern Guizhou," Energies, MDPI, vol. 18(1), pages 1-21, December.
    7. Wei, Jianguang & Zhang, Dong & Zhou, Xiaofeng & Zhou, Runnan & Shamil, Sultanov & Li, Jiangtao & Gayubov, Abdumalik & Hadavimoghaddam, Fahimeh & Chen, Yinghe & Xia, Bing & Fu, Ping & Wang, Yue, 2024. "Characterization of pore structures after ASP flooding for post-EOR," Energy, Elsevier, vol. 300(C).
    8. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    9. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie & Jing, Qu, 2023. "Differential heat transfer characteristics of coal macerals and their control mechanism: At the mesoscale," Energy, Elsevier, vol. 280(C).
    10. Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2024. "High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale," Energy, Elsevier, vol. 295(C).
    11. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    12. Liu, Liang & Xu, Gaojie & Wang, Jianchao & Li, Gang & He, Chao & Jiao, Youzhou, 2025. "Co-pyrolysis of biomass and plastic waste based on ReaxFF MD: Insights into hydrogen migration, radicals interactions and synergistic mechanism," Energy, Elsevier, vol. 325(C).
    13. Qin, Lei & Wang, Ping & Lin, Haifei & Li, Shugang & Zhou, Bin & Bai, Yang & Yan, Dongjie & Ma, Chao, 2023. "Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation," Energy, Elsevier, vol. 263(PA).
    14. Li, He & Lv, Xuefen & Lu, Jiexin & Liu, Meng & Yang, Wei & Hong, Yidu & Liu, Ting & Lin, Baiquan & Wang, Zheng, 2024. "Effect of cyclic thermal stimulation on the pore structure and fluid space of coal and inspiration for coalbed methane production," Energy, Elsevier, vol. 289(C).
    15. Salmachi, Alireza & Zeinijahromi, Abbas & Parker, Harrison Michael & Abdulhussein, Ahmad & Badalyan, Alexander & Kwong, Philip & Al-Afnan, Saad Fahaid Khalaf & Raza, Arshad & Yaseri, Ahmed Zarzor Huss, 2024. "Experimental investigation of alterations in coal fracture network induced by thermal treatment: Implications for CO2 geo-sequestration," Energy, Elsevier, vol. 308(C).
    16. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
    17. Li, Zhenbao & Wang, Shaorui & Wei, Gaoming & Wang, Hu & Zhao, Haizhang & Liang, Rui, 2024. "The seepage driving mechanism and effect of CO2 displacing CH4 in coal seam under different pressures," Energy, Elsevier, vol. 293(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.