IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i6p861-872.html
   My bibliography  Save this article

Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study

Author

Listed:
  • Løvoll, Grunde
  • Méheust, Yves
  • Måløy, Knut Jørgen
  • Aker, Eyvind
  • Schmittbuhl, Jean

Abstract

We have studied experimentally and numerically the displacement of a highly viscous wetting fluid by a non-wetting fluid with low viscosity in a random two-dimensional porous medium under stabilizing gravity. In situations where the magnitudes of the viscous-, capillary- and gravity forces are comparable, we observe a transition from a capillary fingering behavior to a viscous fingering behavior, when decreasing apparent gravity. In the former configuration, the vertical extension of the displacement front saturates; in the latter, thin branched fingers develop and rapidly reach breakthrough. From pressure measurements and picture analyzes, we experimentally determine the threshold for the instability, a value that we also predict using percolation theory. Percolation theory further allows us to predict that the vertical extension of the invasion fronts undergoing stable displacement scales as a power law of the generalized Bond number Bo∗=Bo−Ca, where Bo and Ca are the Bond and capillary numbers, respectively. Our experimental findings are compared to the results of a numerical modeling that takes local viscous forces into account. Theoretical, experimental and numerical approaches appear to be consistent.

Suggested Citation

  • Løvoll, Grunde & Méheust, Yves & Måløy, Knut Jørgen & Aker, Eyvind & Schmittbuhl, Jean, 2005. "Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study," Energy, Elsevier, vol. 30(6), pages 861-872.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:6:p:861-872
    DOI: 10.1016/j.energy.2004.03.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Fachun & He, Zhennan & Meng, Jia & Zhao, Jingwen & Yu, Chao, 2023. "Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation," Energy, Elsevier, vol. 263(PC).
    2. Yang, Renfeng & Zhang, Jinqing & Chen, Han & Jiang, Ruizhong & Sun, Zhe & Rui, Zhenhua, 2019. "The injectivity variation prediction model for water flooding oilfields sustainable development," Energy, Elsevier, vol. 189(C).
    3. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    4. Gunde, Akshay C. & Bera, Bijoyendra & Mitra, Sushanta K., 2010. "Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations," Energy, Elsevier, vol. 35(12), pages 5209-5216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:6:p:861-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.