IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004061.html
   My bibliography  Save this article

Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal

Author

Listed:
  • Gan, Jian
  • Wang, Deming
  • Xiao, Zhongmin
  • Wang, Ya-nan
  • Zhang, Kang
  • Zhu, Xiaolong
  • Li, Shuailong

Abstract

The wetting properties of ALES (Ammonium lauryl ether sulfate), SLES (sodium lauryl ether sulfate), TD (dodecyl triethanolamine salfate) and SDS (sodium dodecyl sulfate) solutions and their adsorption capacities on coal dust surface were evaluated by surface tension, contact angle, sink time, wetting rate, and changes in the micromorphology and functional groups on coal surface. The results showed that the four surfactants share similar adhesion and spreading wettability, while they differ notably in immersion wetting. A water-surfactant-low rank coal (LRC) system was established using Materials Studio software and the Wender coal model; then quantum chemical calculations and molecular dynamics (MD) simulations were conducted. The results showed that ALES is of the widest relative concentration distribution range (25.25–60 Å), the largest overlap range (25 Å) and the largest diffusion coefficient (D = 0.318); NH4+ can easily penetrate the surfactant layer, which proves the strong modification ability of ALES to LRC. ALES/LRC/H2O has the lowest interaction energy and the most H-bonds, indicating that ALES is of a strong adsorption capacity. Based on the experimental data and simulation results, the integrated wettabilities of the four surfactants follow ALES>SLES>TD>SDS, partially contributed by the hydrolytic cations and EO groups.

Suggested Citation

  • Gan, Jian & Wang, Deming & Xiao, Zhongmin & Wang, Ya-nan & Zhang, Kang & Zhu, Xiaolong & Li, Shuailong, 2023. "Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004061
    DOI: 10.1016/j.energy.2023.127012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Tao & Nie, Wen & Chen, Dawei & Xiu, Zihao & Yang, Bo & Liu, Qiang & Guo, Lidian, 2020. "CFD modeling of coal dust migration in an 8.8-meter-high fully mechanized mining face," Energy, Elsevier, vol. 212(C).
    2. Wang, Hui & Xie, Jingna & Xie, Jun & Jiang, Hehe & Wen, Yongzan & Huang, Wanpeng & Wang, Gang & Jiang, Bingyou & Zhang, Chao, 2022. "Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    2. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    4. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    5. Tian, Zhang & Mu, Xinsheng & Deji, Jing & Shaocheng, Ge & Xiangxi, Meng & Shuli, Zhao & Xiaowei, Zhang, 2023. "Influence of aerodynamic pressure on dust removal by supersonic siphon atomization," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.