IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001913.html
   My bibliography  Save this article

Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines

Author

Listed:
  • Farhadian, Abdolreza
  • Zhao, Yang
  • Naeiji, Parisa
  • Rahimi, Alireza
  • Berisha, Avni
  • Zhang, Lunxiang
  • Rizi, Zahra Taheri
  • Iravani, Danial
  • Zhao, Jiafei

Abstract

Compatibility problems are observed during the co-injection of corrosion and gas hydrate inhibitors inside oil and gas pipelines, which reduces their performance. In this study, the newly synthesized dual-purpose inhibitors (DPIs) were developed to overcome the compatibility challenge between the inhibitors. A detailed experimental and computational study was performed to investigate the inhibition activity of DPIs. The results of constant cooling experiments showed that the inhibitors significantly prevented natural gas hydrate formation. DPI2 with a propyl pendant group was the best sample by providing a subcooling temperature of 18.1 °C at 5000 ppm. DPI1 and DPI3 decreased gas consumption by 2.6 and 2.4 times, respectively, compared to pure water. In addition, molecular dynamics simulation revealed that the transportation of gas molecules to the growing hydrate cages was disrupted due to DPI2 adsorption on the surface of the hydrate, which partially covered it and acted as a mass transfer barrier. Furthermore, the interaction of the anion part of the inhibitor with the nearest neighbor water molecules lowered the water activity to form the hydrogen-bonding networks for the hydrate formation. According to corrosion measurements, DPIs suppressed the corrosion rate of mild steel in H2S–CO2 saturated oilfield-produced water, and a maximum inhibition efficiency of 96.3% was obtained by adding 1000 ppm of DPI2. Moreover, the estimated adsorption energy of DPI2 were relatively high and matched with experimental data, implying that the inhibitor has a high degree of adsorption on the metal for forming a protective layer on the mild steel surface. These findings signified that DPIs provide a potential hybrid inhibition of corrosion and gas hydrate formation for flow assurance applications and reduce the operation costs.

Suggested Citation

  • Farhadian, Abdolreza & Zhao, Yang & Naeiji, Parisa & Rahimi, Alireza & Berisha, Avni & Zhang, Lunxiang & Rizi, Zahra Taheri & Iravani, Danial & Zhao, Jiafei, 2023. "Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001913
    DOI: 10.1016/j.energy.2023.126797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    2. Shi, Lingli & He, Yong & Lu, Jingsheng & Hou, Guodong & Liang, Deqing, 2021. "Anti-agglomeration evaluation and Raman spectroscopic analysis on mixed biosurfactants for preventing CH4 hydrate blockage in n-octane + water systems," Energy, Elsevier, vol. 229(C).
    3. Shi, Lingli & He, Yong & Lu, Jingsheng & Liang, Deqing, 2020. "Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems," Energy, Elsevier, vol. 212(C).
    4. Farhadian, Abdolreza & Varfolomeev, Mikhail A. & Rezaeisadat, Morteza & Semenov, Anton P. & Stoporev, Andrey S., 2020. "Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zherui & Dai, Sining & Chen, Cong & Lyu, Huangwu & Zhang, Shuheng & Liu, Xuanji & Li, Yanghui, 2024. "Hydrate aggregation in oil-gas pipelines: Unraveling the dual role of asphalt and water," Energy, Elsevier, vol. 290(C).
    2. Muhammad Hammad Rasool & Maqsood Ahmad & Numair Ahmed Siddiqui & Aisha Zahid Junejo, 2023. "Eco-Friendly Drilling Fluid: Calcium Chloride-Based Natural Deep Eutectic Solvent (NADES) as an All-Rounder Additive," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Farhadian, Abdolreza & Taheri Rizi, Zahra & Naeiji, Parisa & Mohammad-Taheri, Mahboobeh & Shaabani, Alireza & Aminolroayaei, Mohammad Ali & Yang, Mingjun, 2023. "Promising kinetic gas hydrate inhibitors for developing sour gas reservoirs," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    2. Liu, Jia & Lin, Decai & Liang, Deqing & Li, Junhui & Song, Zhiguang, 2023. "Effect of cocoamidopropyl betaine on CH4 hydrate formation and agglomeration in waxy oil-water systems," Energy, Elsevier, vol. 270(C).
    3. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    4. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    5. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    6. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    7. Wang, Lin & Chen, Jiaxin & Ma, Tingxia & Jing, Jiaqiang & Lei, Lijun & Guo, Junyu, 2024. "Experimental study of methane hydrate formation and agglomeration in waxy oil-in-water emulsions," Energy, Elsevier, vol. 288(C).
    8. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    9. Long, Zhen & Zhou, Xuebing & Lu, Zhilin & Liang, Deqing, 2022. "Kinetic inhibition performance of N-vinyl caprolactam/isopropylacrylamide copolymers on methane hydrate formation," Energy, Elsevier, vol. 242(C).
    10. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    11. Farhadian, Abdolreza & Taheri Rizi, Zahra & Naeiji, Parisa & Mohammad-Taheri, Mahboobeh & Shaabani, Alireza & Aminolroayaei, Mohammad Ali & Yang, Mingjun, 2023. "Promising kinetic gas hydrate inhibitors for developing sour gas reservoirs," Energy, Elsevier, vol. 282(C).
    12. Zhang, Jun & Wang, Zili & Li, Liwen & Yan, Youguo & Xu, Jiafang & Zhong, Jie, 2023. "New insights into the kinetic effects of CH3OH on methane hydrate nucleation," Energy, Elsevier, vol. 263(PC).
    13. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    14. Chen, Zherui & Zhang, Yue & Sun, Jingyue & Tian, Yuxuan & Liu, Weiguo & Chen, Cong & Dai, Sining & Song, Yongchen, 2024. "The influence of cyclodextrin on hydrophobicity of pipeline and asphalt distribution: A green and efficient corrosion inhibitor," Energy, Elsevier, vol. 297(C).
    15. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    16. Salma Elhenawy & Majeda Khraisheh & Fares Almomani & Mohammad A. Al-Ghouti & Mohammad K. Hassan & Ala’a Al-Muhtaseb, 2022. "Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques," Energies, MDPI, vol. 15(22), pages 1-44, November.
    17. Chen, Dong & Wang, XiaoMing & Zhang, JiaYi & He, Yan & Lin, Yan & Wang, Fei, 2023. "Inhibition on methane hydrate formation by polyacrylate superabsorbent hydrogel," Energy, Elsevier, vol. 284(C).
    18. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    19. Liang, Yunhang & Bi, Xueqing & Zhao, Yunlong & Tian, Runnan & Zhao, Peihe & Fang, Wenjing & Liu, Bing, 2024. "Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields," Energy, Elsevier, vol. 286(C).
    20. Sinehbaghizadeh, Saeid & Saptoro, Agus & Amjad-Iranagh, Sepideh & Mohammadi, Amir H., 2023. "Understanding the influences of different associated gas impurities and the kinetic modelling of biogas hydrate formation at the molecular scale," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.