IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220321964.html
   My bibliography  Save this article

Multiobjective optimization of underground power cable systems

Author

Listed:
  • Ocłoń, Paweł
  • Rerak, Monika
  • Rao, Ravipudi Venkata
  • Cisek, Piotr
  • Vallati, Andrea
  • Jakubek, Dariusz
  • Rozegnał, Bartosz

Abstract

This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally.

Suggested Citation

  • Ocłoń, Paweł & Rerak, Monika & Rao, Ravipudi Venkata & Cisek, Piotr & Vallati, Andrea & Jakubek, Dariusz & Rozegnał, Bartosz, 2021. "Multiobjective optimization of underground power cable systems," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321964
    DOI: 10.1016/j.energy.2020.119089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ocłoń, Paweł & Cisek, Piotr & Taler, Dawid & Pilarczyk, Marcin & Szwarc, Tomasz, 2015. "Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method," Energy, Elsevier, vol. 92(P2), pages 230-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    3. Ocłoń, Paweł, 2021. "The effect of soil thermal conductivity and cable ampacity on the thermal performance and material costs of underground transmission line," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ocłoń, Paweł & Łopata, Stanisław & Stelmach, Tomasz & Li, Mingjie & Zhang, Jian-Fei & Mzad, Hocine & Tao, Wen-Quan, 2021. "Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study," Energy, Elsevier, vol. 215(PB).
    2. Paweł Ocłoń & Janusz Pobędza & Paweł Walczak & Piotr Cisek & Andrea Vallati, 2020. "Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems," Energies, MDPI, vol. 13(7), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.