IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219321802.html
   My bibliography  Save this article

Two-line (CH∗/CO2∗) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames

Author

Listed:
  • Kamal, M. Mustafa

Abstract

Equivalence ratio fluctuations play an important role in exploring and controlling flame dynamic instabilities such as thermoacoustic combustion instabilities associated with lean premixed gas turbine (GT) engines. However, it is difficult to reliably measure local equivalence ratio, and so we often make estimates based on the ratios of chemiluminescent emissions. Recent studies have reported that equivalence ratio varies with chemiluminescence intensity ratio of CH* and CO2* in the visible spectrum (431 and 410 nm, respectively). A methodology based on this relationship is adopted in the present study to construct equivalence ratio maps for a series of turbulent premixed and stratified methane/air flames under globally lean conditions (mean or global equivalence ratio, ϕ¯=0.75), over a range of stratification with ϕ spanning 0.375–1.125 for the highest level of stratification. In contrast with the previously used CH*/OH* method, the current technique allows for a single visible range camera to be used for chemiluminescence imaging. A comparison of the current estimated equivalence ratio with previously calculated local equivalence ratio from Raman-scattering measurements shows that the two-line chemiluminescence technique can be reliably used to determine equivalence ratio in the instantaneous reaction zone of turbulent flames even at higher turbulence levels and mixture stratification conditions.

Suggested Citation

  • Kamal, M. Mustafa, 2020. "Two-line (CH∗/CO2∗) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219321802
    DOI: 10.1016/j.energy.2019.116485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Taekeun & Kang, Yu-eop & Kim, Seon Woong & Park, Youchan & Yee, Kwanjung & Carter, Campbell D. & Hammack, Stephen D. & Do, Hyungrok, 2022. "Proper orthogonal decomposition of continuum-dominated emission spectra for simultaneous multi-property measurements," Energy, Elsevier, vol. 254(PC).
    2. Ahmadi, Ziaulhaq & Zabetian Targhi, Mohammad, 2021. "Thermal performance investigation of a premixed surface flame burner used in the domestic heating boilers," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219321802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.