IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v18y1993i8p843-858.html
   My bibliography  Save this article

A cross-country decomposition analysis of manufacturing energy consumption

Author

Listed:
  • Park, Se-Hark
  • Dissmann, Bruno
  • Nam, Kee-Yung

Abstract

A decomposition method is used to divide a change in manufacturing energy consumption into three effects: output growth, energy intensity and structural change, using energy-balance tables and manufacturing statistics for 26 selected countries in the period 1973–1980 and 1980–1988. The findings seem to confirm the decoupling of energy and output in developed countries in contrast to the presence of a positive relationship between industrial output and energy consumption in developing countries. Moreover, rapid growth in manufacturing output, coupled with energy-intensive industrialization, seems to be the dominant factor in increasing manufacturing energy consumption in developing countries, while improved energy intensity and less energy-intensive structural change seem to exert a more pronounced dampening impact on manufacturing energy consumption in developed countries than in developing countries.

Suggested Citation

  • Park, Se-Hark & Dissmann, Bruno & Nam, Kee-Yung, 1993. "A cross-country decomposition analysis of manufacturing energy consumption," Energy, Elsevier, vol. 18(8), pages 843-858.
  • Handle: RePEc:eee:energy:v:18:y:1993:i:8:p:843-858
    DOI: 10.1016/0360-5442(93)90062-I
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429390062I
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    2. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    3. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    4. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    5. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    6. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    7. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    8. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    9. J. Stage, 2001. "Decomposition Of Namibian Energy Intensity," South African Journal of Economics, Economic Society of South Africa, vol. 69(4), pages 698-707, December.
    10. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    11. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22, CPB Netherlands Bureau for Economic Policy Analysis.
    12. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    13. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    14. Ramírez, C.A. & Patel, M. & Blok, K., 2005. "The non-energy intensive manufacturing sector," Energy, Elsevier, vol. 30(5), pages 749-767.
    15. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
    16. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    17. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    18. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    19. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters,in: Improving Energy Efficiency through Technology, chapter 3 Edward Elgar Publishing.
    20. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    21. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    22. Lynn Price & Laurie Michaelis & Ernst Worrell & Marta Khrushch, 1998. "Sectoral Trends and Driving Forces of Global Energy Use and Greenhouse Gas Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 263-319, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:18:y:1993:i:8:p:843-858. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.