IDEAS home Printed from
   My bibliography  Save this article

New approach for biogas purification using cryogenic separation and distillation process for CO2 capture


  • Yousef, Ahmed M.
  • El-Maghlany, Wael M.
  • Eldrainy, Yehia A.
  • Attia, Abdelhamid


Biogas – a renewable energy source encompassing primarily CO2/CH4 mixture, can fuel vehicles if it is properly purified. Recently, cryogenic biogas upgrading (CO2 Liquefaction) witnesses a significant progress as a promising purification technique; however, the obstacle hinders its implementation is CO2 freeze-out causing crucial issues as blockage pipes. Therefore, in-depth analysis for tackling this barrier is performed in this work through optimizing operating conditions of a typical low-temperature CO2/CH4 distillation process. Optimization is conducted towards avoiding frosting and lowering energy consumption via varying distillation pressure, temperature, reflux ratio and number of trays, biogas feed composition, and CH4 purity generated. We found that, without CO2 freeze-out, obtaining CH4 purity of 97.12% (mol) – besides a valuable by-product (liquid CO2, 99.92% purity) – is achievable using two columns through adjusting some key parameters. The results divulge that raising distillation pressure and reflux ratio significantly mitigates frosting danger. Moreover, for energy-efficient process, using one column is the most efficient way to produce methane purity below 96% whereas two columns for higher purities. Also, feeding cryogenic process with high-concentration CO2 biogas alleviates energy penalty, ameliorating its competitiveness against traditional technologies. With these new findings, cryogenic platforms can be applicable, competitive biogas upgrading approach.

Suggested Citation

  • Yousef, Ahmed M. & El-Maghlany, Wael M. & Eldrainy, Yehia A. & Attia, Abdelhamid, 2018. "New approach for biogas purification using cryogenic separation and distillation process for CO2 capture," Energy, Elsevier, vol. 156(C), pages 328-351.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:328-351
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    2. Chen, Jianan & Li, Anna & Huang, Zhu & Jiang, Wenming & Xi, Guang, 2023. "Non-equilibrium condensation in flue gas and migration trajectory of CO2 droplets in a supersonic separator," Energy, Elsevier, vol. 276(C).
    3. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    4. Kwan, Trevor Hocksun & Liao, Zhixin & Chen, Ziyang, 2024. "Techno-economic analysis of hybrid liquefaction and low-temperature adsorption carbon capture based on waste heat utilization," Energy, Elsevier, vol. 288(C).
    5. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    6. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    7. Chen, Jianan & Huang, Zhu & Li, Anna & Gao, Ran & Jiang, Wenming, 2022. "Carbon capture in laval nozzles with different bicubic parametric curves and translation of witoszynski curves," Energy, Elsevier, vol. 260(C).
    8. Naquash, Ahmad & Qyyum, Muhammad Abdul & Haider, Junaid & Bokhari, Awais & Lim, Hankwon & Lee, Moonyong, 2022. "State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. R. C. Assunção, Lorena & A. S. Mendes, Pietro & Matos, Stelvia & Borschiver, Suzana, 2021. "Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management," Applied Energy, Elsevier, vol. 292(C).
    10. Mahmoodi-Eshkaftaki, Mahmood & Ebrahimi, Rahim, 2021. "Integrated deep learning neural network and desirability analysis in biogas plants: A powerful tool to optimize biogas purification," Energy, Elsevier, vol. 231(C).
    11. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    12. He, Ting & Si, Bin & Gundersen, Truls & Chen, Liqiong & Lin, Wensheng, 2024. "Integrated ethane recovery and cryogenic carbon capture in a dual mixed refrigerant natural gas liquefaction process," Energy, Elsevier, vol. 290(C).
    13. Abdolahi-Mansoorkhani, Hamed & Seddighi, Sadegh, 2019. "H2S and CO2 capture from gaseous fuels using nanoparticle membrane," Energy, Elsevier, vol. 168(C), pages 847-857.
    14. Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zahedizadeh, Parviz & Azin, Reza & Zendehboudi, Sohrab, 2021. "Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study," Energy, Elsevier, vol. 214(C).
    15. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    16. Wang, Pengfei & Chen, Yiqi & Teng, Ying & An, Senyou & Li, Yun & Han, Meng & Yuan, Bao & Shen, Suling & Chen, Bin & Han, Songbai & Zhu, Jinlong & Zhu, Jianbo & Zhao, Yusheng & Xie, Heping, 2024. "A comprehensive review of hydrogen purification using a hydrate-based method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    17. Zang, Xiaoya & Zhou, Xuebing & Wan, Lihua & Wang, Jing & Liang, Deqing, 2020. "Investigation of hydrate formation by synthetic ternary gas mixture with cyclopentane(C5H10)," Energy, Elsevier, vol. 210(C).
    18. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    19. Chen, Jianan & Huang, Zhu, 2022. "Spontaneous condensation of carbon dioxide in flue gas at supersonic state," Energy, Elsevier, vol. 254(PC).
    20. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    21. Zbigniew Rogala & Michał Stanclik & Dariusz Łuszkiewicz & Ziemowit Malecha, 2023. "Perspectives for the Use of Biogas and Biomethane in the Context of the Green Energy Transformation on the Example of an EU Country," Energies, MDPI, vol. 16(4), pages 1-11, February.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:328-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.