IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp1132-1141.html
   My bibliography  Save this article

Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies

Author

Listed:
  • Sharma, Ashish
  • Strezov, Vladimir

Abstract

Assessment of the sustainability of alternative transport fuels is essential for directing the development while reducing their impacts. The aim of this paper is to assess the environmental and economic life cycle impacts of alternative transport fuels and compare with conventional fuels. The sustainability assessment was performed for selected fuels, including diesel, gasoline, liquefied petroleum gas, biodiesel, ethanol, hydrogen, fuel cell and electricity, using SimaPro 8.05 life cycle assessment software and Recipe methodology. The study revealed the highest environmental impacts for ethanol flexi fuel technology, followed by biodiesel at close to 80% to the ethanol impacts, liquefied petroleum gas at 45%, gasoline at 30%, diesel at 25%, electricity at 15%, compressed natural gas at 5%, and the minimum for hydrogen technology with only 3% of environmental impacts comparing to ethanol. The total economic costs (including capital costs and operating costs) on per km basis are the highest for battery electric vehicles (electricity fuel) followed by ethanol based flexi fuel vehicles, biodiesel, diesel, gasoline, compressed natural gas, hydrogen (fuel cell) and the minimum for liquefied petroleum gas. The combined environmental and economic impacts revealed hydrogen fuel cell is the best performing fuel technology with only 3% of the impacts of ethanol.

Suggested Citation

  • Sharma, Ashish & Strezov, Vladimir, 2017. "Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies," Energy, Elsevier, vol. 133(C), pages 1132-1141.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1132-1141
    DOI: 10.1016/j.energy.2017.04.160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307375
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hill, Graeme & Heidrich, Oliver & Creutzig, Felix & Blythe, Phil, 2019. "The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Soria Alcaide, Rafael, 2023. "Carbon footprint of battery electric vehicles considering average and marginal electricity mix," Energy, Elsevier, vol. 268(C).
    4. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    5. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    6. Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
    7. Najmul Hoque & Wahidul Biswas & Ilyas Mazhar & Ian Howard, 2020. "Life Cycle Sustainability Assessment of Alternative Energy Sources for the Western Australian Transport Sector," Sustainability, MDPI, vol. 12(14), pages 1-33, July.
    8. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    9. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    10. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    11. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    12. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    13. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Hensher, David A., 2021. "The case for negotiated contracts under the transition to a green bus fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 255-269.
    15. Margarida Casau & Diana C. M. Cancela & João C. O. Matias & Marta Ferreira Dias & Leonel J. R. Nunes, 2021. "Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal)," Resources, MDPI, vol. 10(8), pages 1-20, August.
    16. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).
    17. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    18. Daniel Garraín & Santacruz Banacloche & Paloma Ferreira-Aparicio & Antonio Martínez-Chaparro & Yolanda Lechón, 2021. "Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses," Energies, MDPI, vol. 14(20), pages 1-15, October.
    19. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    20. Martin Kügemann & Heracles Polatidis, 2022. "Methodological Framework to Select Evaluation Criteria for Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles," Energies, MDPI, vol. 15(14), pages 1-18, July.
    21. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
    22. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    23. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
    24. Hensher, David A. & Wei, Edward & Liu, Wen, 2021. "Battery electric vehicles in cities: Measurement of some impacts on traffic and government revenue recovery," Journal of Transport Geography, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:1132-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.