IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v327y2025i2p577-591.html

Robust binary and multinomial logit models for classification with data uncertainties

Author

Listed:
  • Mo, Baichuan
  • Zheng, Yunhan
  • Guo, Xiaotong
  • Ma, Ruoyun
  • Zhao, Jinhua

Abstract

Binary logit (BNL) and multinomial logit (MNL) models are the two most widely used discrete choice models for travel behavior modeling and prediction. However, in many scenarios, the collected data for those models are subject to measurement errors. Previous studies on measurement errors mostly focus on “better estimating model parameters” with training data. In this study, we focus on using BNL and MNL for classification problems, that is, to “better predict the behavior of new samples” when measurement errors occur in testing data. To this end, we propose a robust BNL and MNL framework that is able to account for data uncertainties in both features and labels. The models are based on robust optimization theory that minimizes the worst-case loss over a set of uncertainty data scenarios. Specifically, for feature uncertainties, we assume that the ℓp-norm of the measurement errors in features is smaller than a pre-established threshold. We model label uncertainties by limiting the number of mislabeled choices to at most Γ. Based on these assumptions, we derive a tractable robust counterpart. The derived robust-feature BNL and the robust-label MNL models are exact. However, the formulation for the robust-feature MNL model is an approximation of the exact robust optimization problem. An upper bound of the approximation gap is provided. We prove that the robust estimators are inconsistent but with a higher trace of the Fisher information matrix. They are preferred when out-of-sample data has errors due to the shrunk scale of the estimated parameters. The proposed models are validated in a binary choice data set and a multinomial choice data set, respectively. Results show that the robust models (both features and labels) can outperform the conventional BNL and MNL models in prediction accuracy and log-likelihood. We show that the robustness works like “regularization” and thus has better generalizability.

Suggested Citation

  • Mo, Baichuan & Zheng, Yunhan & Guo, Xiaotong & Ma, Ruoyun & Zhao, Jinhua, 2025. "Robust binary and multinomial logit models for classification with data uncertainties," European Journal of Operational Research, Elsevier, vol. 327(2), pages 577-591.
  • Handle: RePEc:eee:ejores:v:327:y:2025:i:2:p:577-591
    DOI: 10.1016/j.ejor.2025.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725003819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rajesh Paleti & Lacramioara Balan, 2019. "Misclassification in travel surveys and implications to choice modeling: application to household auto ownership decisions," Transportation, Springer, vol. 46(4), pages 1467-1485, August.
    2. Hailin Sun & Huifu Xu, 2016. "Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 377-401, May.
    3. Jerry Hausman, 2001. "Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 57-67, Fall.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    5. Dimitris Bertsimas & Dan A. Iancu & Pablo A. Parrilo, 2010. "Optimality of Affine Policies in Multistage Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 363-394, May.
    6. Wang, Xiao-Feng & Wang, Bin, 2011. "Deconvolution Estimation in Measurement Error Models: The R Package decon," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i10).
    7. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    8. Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
    9. Peter Stopher & Camden FitzGerald & Min Xu, 2007. "Assessing the accuracy of the Sydney Household Travel Survey with GPS," Transportation, Springer, vol. 34(6), pages 723-741, November.
    10. John C. Duchi & Peter W. Glynn & Hongseok Namkoong, 2021. "Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach," Mathematics of Operations Research, INFORMS, vol. 46(3), pages 946-969, August.
    11. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    12. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    13. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    14. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    15. Erik Hurst & Geng Li & Benjamin Pugsley, 2014. "Are Household Surveys Like Tax Forms? Evidence from Income Underreporting of the Self-Employed," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 19-33, March.
    16. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    17. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    18. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    19. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    20. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    21. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    2. Schennach, Susanne M., 2020. "Mismeasured and unobserved variables," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 487-565, Elsevier.
    3. Yingyao Hu & Zhongjian Lin, 2018. "Misclassification and the hidden silent rivalry," CeMMAP working papers CWP12/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Rajesh Paleti & Lacramioara Balan, 2019. "Misclassification in travel surveys and implications to choice modeling: application to household auto ownership decisions," Transportation, Springer, vol. 46(4), pages 1467-1485, August.
    5. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    6. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    7. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    8. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    9. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    10. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    11. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    12. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    13. Eric Blankmeyer, 2018. "Measurement Errors as Bad Leverage Points," Papers 1807.02814, arXiv.org, revised Mar 2020.
    14. Aller, Carlos & González Chapela, Jorge, 2013. "Misclassification of the dependent variable in a debt–repayment behavior context," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 162-172.
    15. Brown, Sarah & Harris, Mark N. & Srivastava, Preety & Taylor, Karl, 2018. "Mental Health and Reporting Bias: Analysis of the GHQ-12," IZA Discussion Papers 11771, Institute of Labor Economics (IZA).
    16. Carletto,Calogero & Dillon,Andrew S. & Zezza,Alberto, 2021. "Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage," Policy Research Working Paper Series 9745, The World Bank.
    17. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    18. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    19. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    20. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:327:y:2025:i:2:p:577-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.