Author
Listed:
- Tu, Ben
- Kantas, Nikolas
- Lee, Robert M.
- Shafei, Behrang
Abstract
Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our “robustify and scalarise” methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.
Suggested Citation
Tu, Ben & Kantas, Nikolas & Lee, Robert M. & Shafei, Behrang, 2025.
"Scalarisation-based risk concepts for robust multi-objective optimisation,"
European Journal of Operational Research, Elsevier, vol. 327(2), pages 559-576.
Handle:
RePEc:eee:ejores:v:327:y:2025:i:2:p:559-576
DOI: 10.1016/j.ejor.2025.04.054
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:327:y:2025:i:2:p:559-576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.