IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v327y2025i1p174-190.html
   My bibliography  Save this article

Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty

Author

Listed:
  • Randall, Natalie
  • Basciftci, Beste

Abstract

Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this emerging issue, this study proposes a risk-averse contextual predictive generator maintenance and operations scheduling problem with traditional and flexible generation resources under wind energy uncertainty. We formulate this problem as a two-stage risk-averse stochastic mixed-integer program, where the first-stage determines the maintenance and unit commitment related decisions of the traditional generation units, whereas the second-stage determines the corresponding decisions for flexible generators along with the production related plans of all generators. To integrate contextual information and the uncertainty around the wind power, we propose a Gaussian Process Regression approach for predicting wind power generation, which is then leveraged into this stochastic program. Since this problem is computationally challenging to solve with a mixed-integer recourse due to the second-stage decisions involving flexible generation resources, we provide two versions of a progressive hedging based solution algorithm by first utilizing the classical progressive hedging approach and then leveraging the Frank–Wolfe algorithm for improving the solution quality. In both versions, we extend these algorithms to the risk-averse setting and present various computational enhancements. Our results on the IEEE 118-bus instances demonstrate the impact of adopting a risk-averse approach compared to risk-neutral and deterministic alternatives with a better worst-case performance, and highlight the value of integrating flexible generation and contextual information with resilient maintenance and operations schedules leading to cost-effective plans with less component failures. Furthermore, our solution algorithms provide good quality solutions in significantly less time compared to the off-the-shelf solver, where the Frank–Wolfe version of the algorithm is capable of finding optimal solutions in majority of the test instances.

Suggested Citation

  • Randall, Natalie & Basciftci, Beste, 2025. "Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty," European Journal of Operational Research, Elsevier, vol. 327(1), pages 174-190.
  • Handle: RePEc:eee:ejores:v:327:y:2025:i:1:p:174-190
    DOI: 10.1016/j.ejor.2025.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725004746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:327:y:2025:i:1:p:174-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.