IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v326y2025i2p357-373.html

A secure cross-silo collaborative method for imbalanced credit scoring

Author

Listed:
  • Wang, Zhongyi
  • Tian, Yuhang
  • Li, Sihan
  • Xiao, Jin

Abstract

With the rapid development of information technology, there is an increasing amount of available data that can reflect a borrower’s creditworthiness, providing new avenues for credit scoring innovations. However, such data is commonly distributed across companies in various industries, and how to take advantage of multi-party collaboration while protecting customer data privacy is a major challenge. In this study, we propose an interpretable vertical logistic regression method with adaptive cost sensitivity (IVLR-ACS) for imbalanced credit scoring. Specifically, we construct a collaborative credit scoring method based on vertical logistic regression to preserve the privacy and security of multi-party information. First, to address the imbalanced class distribution problem, we develop an adaptive cost-sensitive (ACS) loss function to enhance the default risk identification of the proposed method. Then, to overcome the potential problem that the proposed method may suffer from malicious attackers adopting other technical means to steal participants’ private information, we design a differential privacy algorithm with adaptive gradient clipping and noise perturbation decay (ADDP) to train the proposed method. Finally, to improve the interpretability of collaborative multi-party credit decision-making, we introduce a feature importance interpretation method inherent to the logistic regression model to analyze the prediction results. We test the performance of the proposed method on eight credit scoring datasets and analyze its interpretability, privacy, complexity, and communication cost. Extensive experimental results demonstrate the competitiveness of the proposed method to utilize multi-party information securely and effectively.

Suggested Citation

  • Wang, Zhongyi & Tian, Yuhang & Li, Sihan & Xiao, Jin, 2025. "A secure cross-silo collaborative method for imbalanced credit scoring," European Journal of Operational Research, Elsevier, vol. 326(2), pages 357-373.
  • Handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:357-373
    DOI: 10.1016/j.ejor.2025.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172500270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
    2. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    3. Yanhao Wei & Pinar Yildirim & Christophe Van den Bulte & Chrysanthos Dellarocas, 2016. "Credit Scoring with Social Network Data," Marketing Science, INFORMS, vol. 35(2), pages 234-258, March.
    4. Teng, Huei-Wen & Kang, Ming-Hsuan & Lee, I-Han & Bai, Le-Chi, 2024. "Bridging accuracy and interpretability: A rescaled cluster-then-predict approach for enhanced credit scoring," International Review of Financial Analysis, Elsevier, vol. 91(C).
    5. Hongke Zhao & Chuang Zhao & Xi Zhang & Nanlin Liu & Hengshu Zhu & Qi Liu & Hui Xiong, 2023. "An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 747-763, July.
    6. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    7. Asim Roy & Shiban Qureshi & Kartikeya Pande & Divitha Nair & Kartik Gairola & Pooja Jain & Suraj Singh & Kirti Sharma & Akshay Jagadale & Yi-Yang Lin & Shashank Sharma & Ramya Gotety & Yuexin Zhang & , 2019. "Performance Comparison of Machine Learning Platforms," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 207-225, April.
    8. George Petrides & Darie Moldovan & Lize Coenen & Tias Guns & Wouter Verbeke, 2022. "Cost-sensitive learning for profit-driven credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(2), pages 338-350, March.
    9. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    10. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    11. Bai, Chunguang & Shi, Baofeng & Liu, Feng & Sarkis, Joseph, 2019. "Banking credit worthiness: Evaluating the complex relationships," Omega, Elsevier, vol. 83(C), pages 26-38.
    12. Wanyang Dai, 2022. "Optimal policy computing for blockchain based smart contracts via federated learning," Operational Research, Springer, vol. 22(5), pages 5817-5844, November.
    13. Jens Hilscher & Mungo Wilson, 2017. "Credit Ratings and Credit Risk: Is One Measure Enough?," Management Science, INFORMS, vol. 63(10), pages 3414-3437, October.
    14. Xiao, Jin & Zhong, Yu & Jia, Yanlin & Wang, Yadong & Li, Ruoyi & Jiang, Xiaoyi & Wang, Shouyang, 2024. "A novel deep ensemble model for imbalanced credit scoring in internet finance," International Journal of Forecasting, Elsevier, vol. 40(1), pages 348-372.
    15. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    17. Fukuyama, Hirofumi & Tsionas, Mike & Tan, Yong, 2023. "Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1360-1373.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
    2. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    3. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    4. Tu, Jiancheng & Wu, Zhibin, 2025. "Inherently interpretable machine learning for credit scoring: Optimal classification tree with hyperplane splits," European Journal of Operational Research, Elsevier, vol. 322(2), pages 647-664.
    5. Ballegeer, Matteo & Bogaert, Matthias & Benoit, Dries F., 2025. "Evaluating the stability of model explanations in instance-dependent cost-sensitive credit scoring," European Journal of Operational Research, Elsevier, vol. 326(3), pages 630-640.
    6. Weng, Futian & Zhu, Miao & Buckle, Mike & Hajek, Petr & Abedin, Mohammad Zoynul, 2025. "Class imbalance Bayesian model averaging for consumer loan default prediction: The role of soft credit information," Research in International Business and Finance, Elsevier, vol. 74(C).
    7. Chai, Nana & Abedin, Mohammad Zoynul & Yang, Lian & Shi, Baofeng, 2025. "Farmers' credit risk evaluation with an explainable hybrid ensemble approach: A closer look in microfinance," Pacific-Basin Finance Journal, Elsevier, vol. 89(C).
    8. Xia, Yufei & Han, Zhiyin & Li, Yawen & He, Lingyun, 2025. "Credit scoring model for fintech lending: An integration of large language models and FocalPoly loss," International Journal of Forecasting, Elsevier, vol. 41(3), pages 894-919.
    9. Baesens, Bart & Smedts, Kristien, 2025. "Boosting credit risk models," The British Accounting Review, Elsevier, vol. 57(4).
    10. Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
    11. Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    12. Kozodoi, Nikita & Lessmann, Stefan & Alamgir, Morteza & Moreira-Matias, Luis & Papakonstantinou, Konstantinos, 2025. "Fighting sampling bias: A framework for training and evaluating credit scoring models," European Journal of Operational Research, Elsevier, vol. 324(2), pages 616-628.
    13. Zou, Yao & Xia, Meng & Lan, Xingyu, 2025. "Interpretable credit scoring based on an additive extreme gradient boosting," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    14. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    15. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jan 2025.
    16. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    17. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    18. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    19. Sanjiv Das & Xin Huang & Soji Adeshina & Patrick Yang & Leonardo Bachega, 2023. "Credit Risk Modeling with Graph Machine Learning," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 197-217, October.
    20. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:326:y:2025:i:2:p:357-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.