IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v326y2025i1p42-53.html
   My bibliography  Save this article

A proximal splitting algorithm for generalized DC programming with applications in signal recovery

Author

Listed:
  • Pham, Tan Nhat
  • Dao, Minh N.
  • Amjady, Nima
  • Shah, Rakibuzzaman

Abstract

The difference-of-convex (DC) program is an important model in nonconvex optimization due to its structure, which encompasses a wide range of practical applications. In this paper, we aim to tackle a generalized class of DC programs, where the objective function is formed by summing a possibly nonsmooth nonconvex function and a differentiable nonconvex function with Lipschitz continuous gradient, and then subtracting a nonsmooth continuous convex function. We develop a proximal splitting algorithm that utilizes proximal evaluation for the concave part and Douglas–Rachford splitting for the remaining components. The algorithm guarantees subsequential convergence to a critical point of the problem model. Under the widely used Kurdyka–Łojasiewicz property, we establish global convergence of the full sequence of iterates and derive convergence rates for both the iterates and the objective function values, without assuming the concave part is differentiable. The performance of the proposed algorithm is tested on signal recovery problems with a nonconvex regularization term and exhibits competitive results compared to notable algorithms in the literature on both synthetic data and real-world data.

Suggested Citation

  • Pham, Tan Nhat & Dao, Minh N. & Amjady, Nima & Shah, Rakibuzzaman, 2025. "A proximal splitting algorithm for generalized DC programming with applications in signal recovery," European Journal of Operational Research, Elsevier, vol. 326(1), pages 42-53.
  • Handle: RePEc:eee:ejores:v:326:y:2025:i:1:p:42-53
    DOI: 10.1016/j.ejor.2025.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725003194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Junyi Liu & Jong-Shi Pang, 2023. "Risk-Based Robust Statistical Learning by Stochastic Difference-of-Convex Value-Function Optimization," Operations Research, INFORMS, vol. 71(2), pages 397-414, March.
    2. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, December.
    3. Radu Ioan Boţ & Minh N. Dao & Guoyin Li, 2022. "Extrapolated Proximal Subgradient Algorithms for Nonconvex and Nonsmooth Fractional Programs," Mathematics of Operations Research, INFORMS, vol. 47(3), pages 2415-2443, August.
    4. Welington de Oliveira & João Carlos de Oliveira Souza, 2025. "A Progressive Decoupling Algorithm for Minimizing the Difference of Convex and Weakly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-24, March.
    5. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    2. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    3. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    4. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    5. Nikita Kornilov & Mohammad Alkousa & Eduard Gorbunov & Fedor Stonyakin & Pavel Dvurechensky & Alexander Gasnikov, 2025. "Intermediate Gradient Methods with Relative Inexactness," Journal of Optimization Theory and Applications, Springer, vol. 207(3), pages 1-42, December.
    6. Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
    7. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    8. Xin Yang & Lingling Xu, 2023. "Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems," Journal of Global Optimization, Springer, vol. 87(2), pages 939-964, November.
    9. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    10. Francisco García Riesgo & Sergio Luis Suárez Gómez & Enrique Díez Alonso & Carlos González-Gutiérrez & Jesús Daniel Santos, 2021. "Fully Convolutional Approaches for Numerical Approximation of Turbulent Phases in Solar Adaptive Optics," Mathematics, MDPI, vol. 9(14), pages 1-20, July.
    11. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    12. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    13. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    14. Paul R. Rosenbaum, 2023. "Sensitivity analyses informed by tests for bias in observational studies," Biometrics, The International Biometric Society, vol. 79(1), pages 475-487, March.
    15. Xue Gao & Xingju Cai & Deren Han, 2020. "A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 76(4), pages 863-887, April.
    16. Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.
    17. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Aug 2025.
    18. Azimbek Khudoyberdiev & Shabir Ahmad & Israr Ullah & DoHyeun Kim, 2020. "An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment," Energies, MDPI, vol. 13(2), pages 1-27, January.
    19. Welington Oliveira & Valentina Sessa & David Sossa, 2024. "Computing Critical Angles Between Two Convex Cones," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 866-898, May.
    20. David Müller & Vladimir Shikhman, 2022. "Network manipulation algorithm based on inexact alternating minimization," Computational Management Science, Springer, vol. 19(4), pages 627-664, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:326:y:2025:i:1:p:42-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.