Author
Listed:
- Meng, Xiaochun
- Taylor, James W.
Abstract
Value-at-Risk (VaR) is a popular measure of market risk. To convey information regarding potential exceedances beyond the VaR, Expected Shortfall (ES) has become the risk measure for trading book bank regulation. However, the estimation of VaR and ES is challenging, as it requires the estimation of the tail behaviour of daily returns. In this paper, we take advantage of recent research that develops joint scoring functions for VaR and ES. Using these functions, we present a novel approach to estimating the two risk measures based on intraday data. We focus on the intraday range, which is the difference between the highest and lowest intraday log prices. In contrast to intraday observations, the intraday low and high are widely available for many financial assets. To alleviate the challenge of modelling extreme risk measures, we propose the use of the intraday low series. We draw on a theoretical result for Brownian motion to show that a quantile of the daily returns can be estimated as the product of a constant term and a less extreme quantile of the intraday low returns, which we define as the difference between the lowest log price of the day and the log closing price of the previous day. In view of this, we use estimates of the VaR and ES of the intraday low returns to estimate the VaR and ES of the daily returns. We provide empirical support for the new proposals using data for five stock indices and five individual stocks.
Suggested Citation
Meng, Xiaochun & Taylor, James W., 2020.
"Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data,"
European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
Handle:
RePEc:eee:ejores:v:280:y:2020:i:1:p:191-202
DOI: 10.1016/j.ejor.2019.07.011
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:191-202. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.