IDEAS home Printed from
   My bibliography  Save this article

Steady-state optimization of biochemical systems through geometric programming


  • Xu, Gongxian


This paper presents an iterative strategy to address the steady-state optimization of biochemical systems. In the method we take advantage of a special class of nonlinear kinetic models known as Generalized Mass Action (GMA) models. These systems are interesting in that they allow direct merging of stoichiometric and S-system models. In most cases nonconvex steady-state optimization problems with GMA models cannot be transformed into tractable convex formulations, but an iterative strategy can be used to compute the optimal solution by solving a series of geometric programming. The presented framework is applied to several case studies and shown to the tractability and effectiveness of the method. The simulation is also studied to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed and other approaches.

Suggested Citation

  • Xu, Gongxian, 2013. "Steady-state optimization of biochemical systems through geometric programming," European Journal of Operational Research, Elsevier, vol. 225(1), pages 12-20.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20 DOI: 10.1016/j.ejor.2012.07.026

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Chan, Felix T.S. & Kumar, Niraj, 2007. "Global supplier development considering risk factors using fuzzy extended AHP-based approach," Omega, Elsevier, vol. 35(4), pages 417-431, August.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    4. Weber, Charles A. & Current, John R. & Benton, W. C., 1991. "Vendor selection criteria and methods," European Journal of Operational Research, Elsevier, vol. 50(1), pages 2-18, January.
    5. Swift, Cathy Owens, 1995. "Preferences for single sourcing and supplier selection criteria," Journal of Business Research, Elsevier, vol. 32(2), pages 105-111, February.
    6. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    7. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    8. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    9. Leung, L. C. & Cao, D., 2000. "On consistency and ranking of alternatives in fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 124(1), pages 102-113, July.
    10. Kreng, Victor B. & Wu, Chao-Yi, 2007. "Evaluation of knowledge portal development tools using a fuzzy AHP approach: The case of Taiwanese stone industry," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1795-1810, February.
    11. Zhu, Ke-Jun & Jing, Yu & Chang, Da-Yong, 1999. "A discussion on Extent Analysis Method and applications of fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 116(2), pages 450-456, July.
    12. Xu, Zeshui & Da, Qingli, 2005. "A least deviation method to obtain a priority vector of a fuzzy preference relation," European Journal of Operational Research, Elsevier, vol. 164(1), pages 206-216, July.
    13. Rezaei, Jafar & Davoodi, Mansoor, 2011. "Multi-objective models for lot-sizing with supplier selection," International Journal of Production Economics, Elsevier, vol. 130(1), pages 77-86, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.