IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v174y2006i3p1479-1490.html
   My bibliography  Save this article

A Benders decomposition approach for the robust spanning tree problem with interval data

Author

Listed:
  • Montemanni, Roberto

Abstract

No abstract is available for this item.

Suggested Citation

  • Montemanni, Roberto, 2006. "A Benders decomposition approach for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1479-1490, November.
  • Handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1479-1490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00295-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    2. Robert Richardson, 1976. "An Optimization Approach to Routing Aircraft," Transportation Science, INFORMS, vol. 10(1), pages 52-71, February.
    3. Montemanni, R. & Gambardella, L. M., 2005. "A branch and bound algorithm for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 161(3), pages 771-779, March.
    4. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    5. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    6. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    2. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    3. Virginie Gabrel & Cécile Murat & Lei Wu, 2013. "New models for the robust shortest path problem: complexity, resolution and generalization," Annals of Operations Research, Springer, vol. 207(1), pages 97-120, August.
    4. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    5. Chassein, André B. & Goerigk, Marc, 2015. "A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 739-747.
    6. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    7. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    8. Goerigk, Marc & Knust, Sigrid & Le, Xuan Thanh, 2016. "Robust storage loading problems with stacking and payload constraints," European Journal of Operational Research, Elsevier, vol. 253(1), pages 51-67.
    9. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Discussion Paper 2008-64, Tilburg University, Center for Economic Research.
    10. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    11. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    12. Pätzold, Julius & Schöbel, Anita, 2020. "Approximate cutting plane approaches for exact solutions to robust optimization problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 20-30.
    13. Gök Sırma Zeynep Alparslan & Rodica Branzei & Stef Tijs, 2009. "Airport interval games and their Shapley value," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(2), pages 9-18.
    14. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    15. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    16. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
    17. Conde, Eduardo & Candia, Alfredo, 2007. "Minimax regret spanning arborescences under uncertain costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 561-577, October.
    18. Chunqiao Tan & Wenrui Feng & Weibin Han, 2020. "On the Banzhaf-like Value for Cooperative Games with Interval Payoffs," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    19. Prabha Sharma & Sandeep Singh & Diptesh Ghosh & R Chandrasekaran, 2022. "Robust discrete spanning tree problem: local search algorithms," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 632-644, June.
    20. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    2. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    3. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    4. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    5. Shengzhi Shao & Hanif D. Sherali & Mohamed Haouari, 2017. "A Novel Model and Decomposition Approach for the Integrated Airline Fleet Assignment, Aircraft Routing, and Crew Pairing Problem," Transportation Science, INFORMS, vol. 51(1), pages 233-249, February.
    6. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    7. Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
    8. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    9. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    10. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    11. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    12. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    13. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    14. Pearce, Robin H. & Forbes, Michael, 2018. "Disaggregated Benders decomposition and branch-and-cut for solving the budget-constrained dynamic uncapacitated facility location and network design problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 78-88.
    15. Zetina, Carlos Armando & Contreras, Ivan & Fernández, Elena & Luna-Mota, Carlos, 2019. "Solving the optimum communication spanning tree problem," European Journal of Operational Research, Elsevier, vol. 273(1), pages 108-117.
    16. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    17. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    18. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    19. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    20. Jyotirmoy Dalal & Halit Üster, 2018. "Combining Worst Case and Average Case Considerations in an Integrated Emergency Response Network Design Problem," Transportation Science, INFORMS, vol. 52(1), pages 171-188, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1479-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.