IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v506y2025ics0304380025001498.html

Algorithms going wild – A review of machine learning techniques for terrestrial ecology

Author

Listed:
  • Cipriano, Cristina
  • Noce, Sergio
  • Mereu, Simone
  • Santini, Monia

Abstract

The integration of artificial intelligence (AI) algorithms in ecological research is revolutionizing how we monitor, predict, and manage natural systems, enabling more advanced data analysis, pattern recognition, and predictive modelling. This review critically analyzes and synthesizes the application of machine learning and deep learning in terrestrial ecology, providing a comprehensive overview of their paradigms – namely unsupervised, supervised, and reinforcement learning – and semi-supervised learning, along with their respective algorithm families, strengths, and limitations. We examine both current and emerging applications in terrestrial ecological dynamics and modelling, ecosystem management and conservation, identification and classification tasks, such as trait and behavior recognition. Despite these advancements, we summarize several issues hindering the extensive adoption of AI algorithms in ecology, such as inconsistencies or limitations in datasets, algorithm complexity and interpretability affecting transparency and reliability, high computational demands raising environmental sustainability concerns, and difficulties with model generalization. To address these barriers, we identify key areas for future research, namely optimizing data collection, using transfer learning and data augmentation, refining model transparency through explainable AI (XAI) and ethical considerations, and integrating causal inference into AI models. We conclude that AI algorithms hold great promise for delivering more accurate, scalable, and timely data, advancing real-time monitoring and near-instantaneous predictions – e.g., seasonal forecasting – for more dynamic responses to environmental changes. The need for continued methodological innovation and multi- and trans-disciplinary collaboration is emphasized to ensure these technologies are effective, sustainable, and equitable in supporting ecosystem conservation and restoration efforts addressing global ecological crises.

Suggested Citation

  • Cipriano, Cristina & Noce, Sergio & Mereu, Simone & Santini, Monia, 2025. "Algorithms going wild – A review of machine learning techniques for terrestrial ecology," Ecological Modelling, Elsevier, vol. 506(C).
  • Handle: RePEc:eee:ecomod:v:506:y:2025:i:c:s0304380025001498
    DOI: 10.1016/j.ecolmodel.2025.111164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025001498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    2. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    3. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    4. Silva, C.A. & Vilaça, R. & Pereira, A. & Bessa, R.J., 2024. "A review on the decarbonization of high-performance computing centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Rondon, Diego & Mäntyniemi, Samu & Aspi, Jouni & Kvist, Laura & Sillanpää, Mikko J., 2024. "A Bayesian multi-state model with data augmentation for estimating population size and effect of inbreeding on survival," Ecological Modelling, Elsevier, vol. 490(C).
    6. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    7. repec:plo:pone00:0193085 is not listed on IDEAS
    8. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    9. Thomas J. Stohlgren & Peter Ma & Sunil Kumar & Monique Rocca & Jeffrey T. Morisette & Catherine S. Jarnevich & Nate Benson, 2010. "Ensemble Habitat Mapping of Invasive Plant Species," Risk Analysis, John Wiley & Sons, vol. 30(2), pages 224-235, February.
    10. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    11. Maya Wardeh & Matthew Baylis & Marcus S. C. Blagrove, 2021. "Predicting mammalian hosts in which novel coronaviruses can be generated," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. repec:plo:pone00:0235750 is not listed on IDEAS
    13. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    14. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    17. Tobias Jensen & Frederik Seerup Hass & Mohammad Seam Akbar & Philip Holm Petersen & Jamal Jokar Arsanjani, 2020. "Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    18. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    2. Oyebayo Ridwan Olaniran & Saidat Fehintola Olaniran & Ali Rashash R. Alzahrani & Nada MohammedSaeed Alharbi & Asma Ahmad Alzahrani, 2025. "Random Forest Adaptation for High-Dimensional Count Regression," Mathematics, MDPI, vol. 13(18), pages 1-32, September.
    3. Gao, Qishuo & Shi, Vivien & Pettit, Christopher & Han, Hoon, 2022. "Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia," Land Use Policy, Elsevier, vol. 123(C).
    4. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    5. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    6. Heinisch, Katja & Scaramella, Fabio & Schult, Christoph, 2025. "Assumption errors and forecast accuracy: A partial linear instrumental variable and double machine learning approach," IWH Discussion Papers 6/2025, Halle Institute for Economic Research (IWH).
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
    10. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    11. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    12. Lin, Zhexiao & Han, Fang, 2025. "On regression-adjusted imputation estimators of average treatment effects," Journal of Econometrics, Elsevier, vol. 251(C).
    13. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross‐border bank claims: The role of foreign‐owned banks in emerging countries," Post-Print hal-04569319, HAL.
    14. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    15. Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    16. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    17. Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.
    18. Michael Lechner & Gabriel Okasa, 2025. "Random Forest estimation of the ordered choice model," Empirical Economics, Springer, vol. 68(1), pages 1-106, January.
    19. T. Tony Cai & Zijian Guo & Yin Xia, 2023. "Statistical inference and large-scale multiple testing for high-dimensional regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1135-1171, December.
    20. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:506:y:2025:i:c:s0304380025001498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.