IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v445y2021ics0304380021000661.html
   My bibliography  Save this article

Simulating the effects of aquatic avifauna on the Phosphorus dynamics of aquatic systems

Author

Listed:
  • Adhurya, Sagar
  • Das, Suvendu
  • Ray, Santanu

Abstract

Many freshwater ecosystems throughout the world support a high number of waterbirds. Nutrient from droppings of these waterbirds may serve as an important source of nutrients to those systems. Previous works suggest that excess nutrients from waterbirds may lead to eutrophication. The excess nutrients also may induce nuisance growth of aquatic weeds in shallow lakes. However, the aquatic weeds serve as an important food for some avian species. The main objective of this work is to study how the waterbirds affect the dynamics of the aquatic ecosystem through a process-based modelling approach.

Suggested Citation

  • Adhurya, Sagar & Das, Suvendu & Ray, Santanu, 2021. "Simulating the effects of aquatic avifauna on the Phosphorus dynamics of aquatic systems," Ecological Modelling, Elsevier, vol. 445(C).
  • Handle: RePEc:eee:ecomod:v:445:y:2021:i:c:s0304380021000661
    DOI: 10.1016/j.ecolmodel.2021.109495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukherjee, Joyita & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "A system dynamic modeling of carbon cycle from mangrove litter to the adjacent Hooghly estuary, India," Ecological Modelling, Elsevier, vol. 252(C), pages 185-195.
    2. Janssen, Annette B.G. & Teurlincx, Sven & Beusen, Arthur H.W. & Huijbregts, Mark A.J. & Rost, Jasmijn & Schipper, Aafke M. & Seelen, Laura M.S. & Mooij, Wolf M. & Janse, Jan H., 2019. "PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide," Ecological Modelling, Elsevier, vol. 396(C), pages 23-32.
    3. Marois, Darryl E. & Mitsch, William J., 2016. "Modeling phosphorus retention at low concentrations in Florida Everglades mesocosms," Ecological Modelling, Elsevier, vol. 319(C), pages 42-62.
    4. Mandal, Sudipto & Roy Goswami, Abhishek & Mukhopadhyay, Subhra Kumar & Ray, Santanu, 2015. "Simulation model of phosphorus dynamics of an eutrophic impoundment – East Calcutta Wetlands, a Ramsar site in India," Ecological Modelling, Elsevier, vol. 306(C), pages 226-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Shufei & Shen, Anglu & Jiang, Jie & Wang, Hao & Yuan, Sanling, 2022. "Kinetics of phosphate uptake in the dinoflagellate Karenia mikimotoi in response to phosphate stress and temperature," Ecological Modelling, Elsevier, vol. 468(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    2. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    3. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    4. Osakpolor, Stephen E. & Kattwinkel, Mira & Schirmel, Jens & Feckler, Alexander & Manfrin, Alessandro & Schäfer, Ralf B., 2021. "Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems," Ecological Modelling, Elsevier, vol. 458(C).
    5. Bahi, Aya & Sauvage, Sabine & Payraudeau, Sylvain & Tournebize, Julien, 2023. "PESTIPOND: A descriptive model of pesticide fate in artificial ponds: I. Model development," Ecological Modelling, Elsevier, vol. 485(C).
    6. Gao, Shufei & Shen, Anglu & Jiang, Jie & Wang, Hao & Yuan, Sanling, 2022. "Kinetics of phosphate uptake in the dinoflagellate Karenia mikimotoi in response to phosphate stress and temperature," Ecological Modelling, Elsevier, vol. 468(C).
    7. Mundim, Kleber C. & Baraldi, Solange & Machado, Hugo G. & Vieira, Fernando M.C., 2020. "Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory," Ecological Modelling, Elsevier, vol. 431(C).
    8. Sannigrahi, Srikanta, 2017. "Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models," Ecological Modelling, Elsevier, vol. 356(C), pages 73-90.
    9. Ruichen Xu & Yong Pang & Zhibing Hu & Xiaoyan Hu, 2022. "The Spatiotemporal Characteristics of Water Quality and Main Controlling Factors of Algal Blooms in Tai Lake, China," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    10. Min Fu & Lixin Tian & Gaogao Dong & Ruijin Du & Peipei Zhou & Minggang Wang, 2016. "Modeling on Regional Atmosphere-Soil-Land Plant Carbon Cycle Dynamic System," Sustainability, MDPI, vol. 8(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:445:y:2021:i:c:s0304380021000661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.