IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v418y2020ics0304380019303370.html
   My bibliography  Save this article

Stochastic matrix metapopulation models with fast migration: Re-scaling survival to the fast scale

Author

Listed:
  • Sanz, Luis
  • Bravo de la Parra, Rafael

Abstract

In this work we address the analysis of discrete-time models of structured metapopulations subject to environmental stochasticity. Previous works on these models made use of the fact that migrations between the patches can be considered fast with respect to demography (maturation, survival, reproduction) in the population. It was assumed that, within each time step of the model, there are many fast migration steps followed by one slow demographic event. This assumption allowed one to apply approximate reduction techniques that eased the model analysis. It is however a questionable issue in some cases since, in particular, individuals can die at any moment of the time step. We propose new non-equivalent models in which we re-scale survival to consider its effect on the fast scale. We propose a more general formulation of the approximate reduction techniques so that they also apply to the proposed new models. We prove that the main asymptotic elements in this kind of stochastic models, the Stochastic Growth Rate (SGR)11Stochastic Growth Rate (SGR). Scaled Logarithmic Variance (SLV). and the Scaled Logarithmic Variance (SLV), can be related between the original and the reduced systems, so that the analysis of the latter allows us to ascertain the population fate in the first. Then we go on to considering some cases where we illustrate the reduction technique and show the differences between both modelling options. In some cases using one option represents exponential growth, whereas the other yields extinction.

Suggested Citation

  • Sanz, Luis & Bravo de la Parra, Rafael, 2020. "Stochastic matrix metapopulation models with fast migration: Re-scaling survival to the fast scale," Ecological Modelling, Elsevier, vol. 418(C).
  • Handle: RePEc:eee:ecomod:v:418:y:2020:i:c:s0304380019303370
    DOI: 10.1016/j.ecolmodel.2019.108829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:418:y:2020:i:c:s0304380019303370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.