IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v394y2019icp11-17.html
   My bibliography  Save this article

Experimental design principles to choose the number of Monte Carlo replicates for stochastic ecological models

Author

Listed:
  • Kennedy, Maureen C.

Abstract

Ecologists often rely on computer models as virtual laboratories to evaluate alternative theories, make predictions, perform scenario analysis, and to aid in decision-making. The application of ecological models can have real-world consequences that drive ecological theory development and science-based decision and policy-making, so it is imperative that the conclusions drawn from ecological models have a strong, credible quantitative basis. In particular it is important to establish whether any predicted change in a model output has ecological and statistical significance. Ecological models may include stochastic components, using probability distributions to represent some modeled processes. An individual run of a stochastic ecological model is a random draw from an infinitely large population, requiring replicate simulations to estimate the distribution of model outcomes. An important consideration is the number of Monte Carlo replicates necessary to draw useful conclusions from the model analysis. A simple framework is presented that borrows from well-understood techniques for experimental design, including confidence interval estimation and sample size power analysis. The desired precision of interval estimates for model prediction, or the minimum desired detectable effect size between scenarios, is established by the researcher in the context of the model objectives and the ecological system. The number of replicates required to achieve that level of precision or detectable effect is computed given an estimate of the variability in the model outcomes of interest. If the number of replicates is computationally prohibitive, then the expected precision or detectable effect for that sample size should be reported. An example is given for a stochastic model of fire spread integrated with an eco-hydrological model.

Suggested Citation

  • Kennedy, Maureen C., 2019. "Experimental design principles to choose the number of Monte Carlo replicates for stochastic ecological models," Ecological Modelling, Elsevier, vol. 394(C), pages 11-17.
  • Handle: RePEc:eee:ecomod:v:394:y:2019:i:c:p:11-17
    DOI: 10.1016/j.ecolmodel.2018.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018304332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    2. Turner, Benjamin L., 2020. "Model laboratories: A quick-start guide for design of simulation experiments for dynamic systems models," Ecological Modelling, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:394:y:2019:i:c:p:11-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.