IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp233-240.html
   My bibliography  Save this article

Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry

Author

Listed:
  • Wang, Hao
  • Lu, Zexian
  • Raghavan, Aditya

Abstract

“Stoichiometric homeostasis” is the degree to which organisms maintain a constant chemical composition in the face of variations in the chemical composition and availability of their environmental resources. Most stoichiometric models have assumed constant nutrient contents in heterotrophs, called “strict homeostasis”, and varied nutrient contents in autotrophs, called “non-homeostasis”, due to the fact that the stoichiometric variability of heterotrophs is often much less than that of autotrophs. The study for the hard dynamical threshold under sufficient light in Wang et al. (2012) suggested that the “strict homeostasis” assumption is reasonable when the stoichiometric variability of herbivores is less than the hard dynamical threshold. In this paper, we explore the light-dependent case that results in homoclinic and heteroclinic bifurcations, from which we obtain the weak dynamical threshold, which is normally larger than the hard dynamical threshold. With the weak dynamical threshold, the “strict homeostasis” assumption is more likely valid, which further confirms the conclusion that strict homeostasis of herbivores can be assumed for most herbivores. Homoclinic/heteroclinic bifurcations are not only exciting dynamics in mathematics but also important indicators for the robustness of empirical studies. Experimental results are highly sensitive when homoclinic or heteroclinic orbits occur.

Suggested Citation

  • Wang, Hao & Lu, Zexian & Raghavan, Aditya, 2018. "Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry," Ecological Modelling, Elsevier, vol. 384(C), pages 233-240.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:233-240
    DOI: 10.1016/j.ecolmodel.2018.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mulder, Kenneth, 2007. "Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions," Ecological Modelling, Elsevier, vol. 207(2), pages 319-326.
    2. Mulder, Kenneth & Bowden, William Breck, 2007. "Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia," Ecological Modelling, Elsevier, vol. 202(3), pages 427-440.
    3. Wang, Hao & Sterner, Robert W. & Elser, James J., 2012. "On the “strict homeostasis” assumption in ecological stoichiometry," Ecological Modelling, Elsevier, vol. 243(C), pages 81-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hao & Sterner, Robert W. & Elser, James J., 2012. "On the “strict homeostasis” assumption in ecological stoichiometry," Ecological Modelling, Elsevier, vol. 243(C), pages 81-88.
    2. Cédric L Meunier & Arne M Malzahn & Maarten Boersma, 2014. "A New Approach to Homeostatic Regulation: Towards a Unified View of Physiological and Ecological Concepts," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    3. Mulder, Kenneth, 2007. "Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions," Ecological Modelling, Elsevier, vol. 207(2), pages 319-326.
    4. Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
    5. Perhar, Gurbir & Arhonditsis, George B., 2009. "The effects of seston food quality on planktonic food web patterns," Ecological Modelling, Elsevier, vol. 220(6), pages 805-820.
    6. Zhao, Jingyang & Ramin, Maryam & Cheng, Vincent & Arhonditsis, George B., 2008. "Plankton community patterns across a trophic gradient: The role of zooplankton functional groups," Ecological Modelling, Elsevier, vol. 213(3), pages 417-436.
    7. Peace, Angela, 2015. "Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models," Ecological Modelling, Elsevier, vol. 312(C), pages 125-135.
    8. Ramin, Maryam & Perhar, Gurbir & Shimoda, Yuko & Arhonditsis, George B., 2012. "Examination of the effects of nutrient regeneration mechanisms on plankton dynamics using aquatic biogeochemical modeling," Ecological Modelling, Elsevier, vol. 240(C), pages 139-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.