IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v363y2017icp137-156.html
   My bibliography  Save this article

Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands

Author

Listed:
  • Klosterhalfen, A.
  • Herbst, M.
  • Weihermüller, L.
  • Graf, A.
  • Schmidt, M.
  • Stadler, A.
  • Schneider, K.
  • Subke, J.-A.
  • Huisman, J.A.
  • Vereecken, H.

Abstract

Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data-transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements.

Suggested Citation

  • Klosterhalfen, A. & Herbst, M. & Weihermüller, L. & Graf, A. & Schmidt, M. & Stadler, A. & Schneider, K. & Subke, J.-A. & Huisman, J.A. & Vereecken, H., 2017. "Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands," Ecological Modelling, Elsevier, vol. 363(C), pages 137-156.
  • Handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:137-156
    DOI: 10.1016/j.ecolmodel.2017.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017300054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Wenping & Liang, Shunlin & Liu, Shuguang & Weng, Ensheng & Luo, Yiqi & Hollinger, David & Zhang, Haicheng, 2012. "Improving model parameter estimation using coupling relationships between vegetation production and ecosystem respiration," Ecological Modelling, Elsevier, vol. 240(C), pages 29-40.
    2. Herbst, M. & Hellebrand, H.J. & Bauer, J. & Huisman, J.A. & Šimůnek, J. & Weihermüller, L. & Graf, A. & Vanderborght, J. & Vereecken, H., 2008. "Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2 transport and carbon turnover model," Ecological Modelling, Elsevier, vol. 214(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    2. Hanqing Ma & Chunfeng Ma & Xin Li & Wenping Yuan & Zhengjia Liu & Gaofeng Zhu, 2020. "Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    3. Yuan, Wenping & Cai, Wenwen & Liu, Shuguang & Dong, Wenjie & Chen, Jiquan & Arain, M. Altaf & Blanken, Peter D. & Cescatti, Alessandro & Wohlfahrt, Georg & Georgiadis, Teodoro & Genesio, Lorenzo & Gia, 2014. "Vegetation-specific model parameters are not required for estimating gross primary production," Ecological Modelling, Elsevier, vol. 292(C), pages 1-10.
    4. Li, Qianyu & Xia, Jianyang & Shi, Zheng & Huang, Kun & Du, Zhenggang & Lin, Guanghui & Luo, Yiqi, 2016. "Variation of parameters in a Flux-Based Ecosystem Model across 12 sites of terrestrial ecosystems in the conterminous USA," Ecological Modelling, Elsevier, vol. 336(C), pages 57-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:137-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.