IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v265y2013icp207-220.html
   My bibliography  Save this article

Modeling the influence of flow on invertebrate drift across spatial scales using a 2D hydraulic model and a 1D population model

Author

Listed:
  • Anderson, Kurt E.
  • Harrison, Lee R.
  • Nisbet, Roger M.
  • Kolpas, Allison

Abstract

Methods for creating explicit links in environmental flow assessments between changes in physical habitat and the availability and delivery rate of macroinvertebrates that comprise fish diets are generally lacking. Here, we present a hybrid modelling approach to simulate the spatial dynamics of macroinvertebrates in a section of the Merced River in central California, re-engineered to improve the viability of Chinook salmon. Our efforts focused on quantifying the influence of the hydrodynamic environment on invertebrate drift dispersal, which is a key input to salmon bioenergetics models. We developed a two-dimensional hydrodynamic model that represented flow dynamics well at baseflow and 75% bankfull discharges. Hydraulic predictions from the 2D model were coupled with a particle tracking algorithm to compute drift dispersal, where the settling rates of simulated macroinvertebrates were parameterized from the literature. Using the cross-sectional averaged velocities from the 2D model, we then developed a simpler 1D representation of how dispersal distributions respond to flow variability. These distributions were included in 1D invertebrate population models that represent variability in drift densities over reach scales. Dispersal distributions in the 2D simulation and 1D representation responded strongly to spatial changes in flow. When included in the 1D population model, dispersal responses to flow ‘scaled-up’ to yield distributions of drifting macroinvertebrates that showed a strong inverse relationship with flow velocity. The strength of the inverse relationship was influenced by model parameters, including the rate at which dispersers settle to the benthos. Finally, we explore how the scale of riffle/pool variability relative to characteristic length scales calculated from the 1D population model can be used to understand drift responses for different settling rates and at different discharges. We show that, under the range of parameter values explored, changes in velocity associated with transitions between riffles and pools produce local changes in drift density of proportional magnitude. This simple result suggests a means for confronting model predictions against field data.

Suggested Citation

  • Anderson, Kurt E. & Harrison, Lee R. & Nisbet, Roger M. & Kolpas, Allison, 2013. "Modeling the influence of flow on invertebrate drift across spatial scales using a 2D hydraulic model and a 1D population model," Ecological Modelling, Elsevier, vol. 265(C), pages 207-220.
  • Handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:207-220
    DOI: 10.1016/j.ecolmodel.2013.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hayes, John W. & Hughes, Nicholas F. & Kelly, Lon H., 2007. "Process-based modelling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids," Ecological Modelling, Elsevier, vol. 207(2), pages 171-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laplanche, Christophe & Leunda, Pedro M. & Boithias, Laurie & Ardaíz, José & Juanes, Francis, 2019. "Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data," Ecological Modelling, Elsevier, vol. 392(C), pages 8-21.
    2. Hafs, Andrew W. & Harrison, Lee R. & Utz, Ryan M. & Dunne, Thomas, 2014. "Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon," Ecological Modelling, Elsevier, vol. 285(C), pages 30-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:207-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.