IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i3p795-803.html
   My bibliography  Save this article

Sensitivity of modelled gross primary productivity to topographic effects on surface radiation: A case study in the Cotter River Catchment, Australia

Author

Listed:
  • Sabetraftar, K.
  • Mackey, B.
  • Croke, B.

Abstract

Gross primary productivity (GPP) is a critical response variable for many environmental problems, including terrestrial carbon accounting and the calculation of catchment water balances. Various approaches for modelling GPP have been developed and applied at continental and landscapes scales, but little attention has been given to the sensitivity of GPP to the spatial scale of its driving variables. A key driving variable is surface radiation (Rs) which is influenced by both meso-scale factors (latitude, time of year, cloudiness) and the topographic variables of slope, aspect and horizon shading. We compared the sensitivity of modelled GPP to two different sources of surface radiation (Rs): (1) the ANUCLIM method which only captures the meso-scaled factors; and (2) the SRAD method which incorporates the topographic effects GPP was calculated using the radiation use efficiency (RUE) model (Roderick et al., 2001) to discern general patterns of vegetation productivity at a sub-catchment (i.e. sub-water shed) scale. The radiation use efficiency approach uses the normalized difference vegetation index (NDVI) derived from satellite data (MODIS TERRA), along with estimates of solar radiation at the top of the atmosphere (Ro) and canopy (Rs). In this approach, Ro and Rs capture the influence of diffuse irradiance in canopy photosynthesis and vegetation productivity respectively. This research showed that Rs calculated using the SRAD program provides important discrimination of GPP regimes at a sub-catchment scale, as the result of minimum and maximum daily radiation varying between shaded and exposed surfaces. However, mean daily radiation at a whole-of-catchment scale did not differ between the two sources as the differences in the minimum and maximum daily values tend to cancel each other out. Applications of GPP models therefore need to consider whether topographic factors are important and select the appropriate source of Rs values. GPP models should also reflect understanding of radiation use efficiency. However, further research is required especially with respect to the influence of water stress on plant response.

Suggested Citation

  • Sabetraftar, K. & Mackey, B. & Croke, B., 2011. "Sensitivity of modelled gross primary productivity to topographic effects on surface radiation: A case study in the Cotter River Catchment, Australia," Ecological Modelling, Elsevier, vol. 222(3), pages 795-803.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:795-803
    DOI: 10.1016/j.ecolmodel.2010.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:795-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.