IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i3p447-455.html
   My bibliography  Save this article

Connected fragmented habitats facilitate stable coexistence dynamics

Author

Listed:
  • Karsai, Istvan
  • Kampis, George

Abstract

In this paper we endeavor to test the controversial ideas that exist about the role of fragmentation in a conservation context. In line with earlier understanding, we find that habitat fragmentation alone results in a strong detrimental effect (especially for the predator population). Connecting the fragmented habitats facilitates predator survival and hence prey survival as compared to the unconnected fragmented case. Our main result is counterintuitive: in the presence of a high quality predator, connected fragmented habitats ensure a better chance for coexistence than does even the unfragmented case. We explain why a connected fragmented habitat might thus be beneficial for the stabilization of the system, and how connections between sub-habitats are able to protect prey population from over-exploitation. In the model, habitat fragmentation is separated from the effects of habitat destruction, in order to better understand how populations react to habitat transformation.

Suggested Citation

  • Karsai, Istvan & Kampis, George, 2011. "Connected fragmented habitats facilitate stable coexistence dynamics," Ecological Modelling, Elsevier, vol. 222(3), pages 447-455.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:447-455
    DOI: 10.1016/j.ecolmodel.2010.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thierry, Hugo & Sheeren, David & Marilleau, Nicolas & Corson, Nathalie & Amalric, Marion & Monteil, Claude, 2015. "From the Lotka–Volterra model to a spatialised population-driven individual-based model," Ecological Modelling, Elsevier, vol. 306(C), pages 287-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:447-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.