IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i13p1649-1654.html
   My bibliography  Save this article

Improving the effectiveness of angular dispersion in plant neighbourhood models

Author

Listed:
  • Richards, M.L.A.
  • Aitkenhead, M.J.
  • McDonald, A.J.S.

Abstract

Spatial arrangement can be an important factor affecting competition among plants. We evaluated three ways to improve the effectiveness of angular dispersion (AD) for describing spatial arrangement in plant neighbourhood models. First, we modified Zar's (1974) AD formula by weighting each neighbour by its competitive influence. We calculated this using two different competition indices to derive an AD of competitive influence, rather than of equally weighted plant locations, around a subject plant. Secondly, we constrained the effect of AD on the neighbourhood model using an optimised parameter that defines the minimum value that AD can adopt. Thirdly, we included the direction in which competition is concentrated (the mean azimuth of the weighted AD) in the growth models. These developments were evaluated within a radial growth model of Scots pine and birch growing in semi-natural, spatially heterogeneous forest. Weighted AD resulted in significant improvements in predicted radial growth of target trees over the traditional measure of AD. The optimised parameter that defines the minimum value of AD consistently evolved values significantly higher than zero. This suggests that clumped and dispersed neighbourhoods do not differ in their negative effects on a subject tree as much as expected. The inclusion of directional components of the weighted AD did not improve the accuracy of the growth models. Weighting of the angular dispersion of neighbours improved the performance of local competition models.

Suggested Citation

  • Richards, M.L.A. & Aitkenhead, M.J. & McDonald, A.J.S., 2010. "Improving the effectiveness of angular dispersion in plant neighbourhood models," Ecological Modelling, Elsevier, vol. 221(13), pages 1649-1654.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:13:p:1649-1654
    DOI: 10.1016/j.ecolmodel.2010.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010001407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richards, M. & McDonald, A.J.S. & Aitkenhead, M.J., 2008. "Optimisation of competition indices using simulated annealing and artificial neural networks," Ecological Modelling, Elsevier, vol. 214(2), pages 375-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bittebiere, A.-K. & Mony, C. & Clément, B. & Garbey, M., 2012. "Modeling competition between plants using an Individual Based Model: Methods and effects on the growth of two species with contrasted growth forms," Ecological Modelling, Elsevier, vol. 234(C), pages 38-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram P Sharma & Zdeněk Vacek & Stanislav Vacek & Vilém Podrázský & Václav Jansa, 2017. "Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    2. Abotaleb Salehnasab & Mahmoud Bayat & Manouchehr Namiranian & Bagher Khaleghi & Mahmoud Omid & Hafiz Umair Masood Awan & Nadir Al-Ansari & Abolfazl Jaafari, 2022. "Machine Learning for the Estimation of Diameter Increment in Mixed and Uneven-Aged Forests," Sustainability, MDPI, vol. 14(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:13:p:1649-1654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.