IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v211y2008i1p47-56.html
   My bibliography  Save this article

Numerical analysis and parameter estimation technique for insect population redistribution models

Author

Listed:
  • Jian, Fuji
  • Jayas, Digvir S.
  • White, Noel D.G.
  • Smith, E.A.

Abstract

Insect population redistribution was modeled by transport equations. The technique for estimating the coefficients associated with the transport equations (or more generally, population redistribution models) was developed using the finite difference method. The parameter(s) in the equations were estimated to relate back to the underlying rates and processes producing movement. The performance of the technique was tested with the population dispersal of adult Cryptolestes ferrugineus in stored wheat columns and boxes with or without temperature gradients. There was no significant difference among the insect numbers recovered and predicted by the finite difference and analytical methods. Therefore, a diffusion equation could be employed to model the population redistribution of adult C. ferrugineus in stored grain, and the finite difference method could be used to solve the transport equations.

Suggested Citation

  • Jian, Fuji & Jayas, Digvir S. & White, Noel D.G. & Smith, E.A., 2008. "Numerical analysis and parameter estimation technique for insect population redistribution models," Ecological Modelling, Elsevier, vol. 211(1), pages 47-56.
  • Handle: RePEc:eee:ecomod:v:211:y:2008:i:1:p:47-56
    DOI: 10.1016/j.ecolmodel.2007.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007004243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silverman, B. David, 2007. "Modeling the effect of growth rate and survivability trade-offs on species coexistence and spatial topology at a traveling invasive wave-front," Ecological Modelling, Elsevier, vol. 202(3), pages 454-464.
    2. Billoir, Elise & Péry, Alexandre R.R. & Charles, Sandrine, 2007. "Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna: A combination of the DEBtox and matrix population models," Ecological Modelling, Elsevier, vol. 203(3), pages 204-214.
    3. Harmand, J. & Godon, J.J., 2007. "Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors," Ecological Modelling, Elsevier, vol. 200(3), pages 393-402.
    4. Jian, Fuji & Jayas, Digvir S. & White, Noel D.G. & Fields, Paul G., 2007. "A distributed-delay model to predict ageing and survival rates of adults of Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) in granaries filled with wheat," Ecological Modelling, Elsevier, vol. 200(3), pages 412-420.
    5. Bommarco, Riccardo & Firle, Sascha O. & Ekbom, Barbara, 2007. "Outbreak suppression by predators depends on spatial distribution of prey," Ecological Modelling, Elsevier, vol. 201(2), pages 163-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramanantoanina, A. & Hui, C. & Ouhinou, A., 2011. "Effects of density-dependent dispersal behaviours on the speed and spatial patterns of range expansion in predator–prey metapopulations," Ecological Modelling, Elsevier, vol. 222(19), pages 3524-3530.
    2. Su, Min & Hui, Cang & Zhang, Yanyu & Li, Zizhen, 2009. "How does the spatial structure of habitat loss affect the eco-epidemic dynamics?," Ecological Modelling, Elsevier, vol. 220(1), pages 51-59.
    3. Piñol, Josep & Espadaler, Xavier & Pérez, Nicolás & Beven, Keith, 2009. "Testing a new model of aphid abundance with sedentary and non-sedentary predators," Ecological Modelling, Elsevier, vol. 220(19), pages 2469-2480.
    4. Radchuk, Viktoriia & Oppel, Steffen & Groeneveld, Jürgen & Grimm, Volker & Schtickzelle, Nicolas, 2016. "Simple or complex: Relative impact of data availability and model purpose on the choice of model types for population viability analyses," Ecological Modelling, Elsevier, vol. 323(C), pages 87-95.
    5. Wade, M.J. & Harmand, J. & Benyahia, B. & Bouchez, T. & Chaillou, S. & Cloez, B. & Godon, J.-J. & Moussa Boudjemaa, B. & Rapaport, A. & Sari, T. & Arditi, R. & Lobry, C., 2016. "Perspectives in mathematical modelling for microbial ecology," Ecological Modelling, Elsevier, vol. 321(C), pages 64-74.
    6. Cabrera F, María I., 2011. "Deterministic approach to the study of the interaction predator–prey in a chemostat with predator mutual interference. Implications for the paradox of enrichment," Ecological Modelling, Elsevier, vol. 222(3), pages 598-605.
    7. Monte, Luigi, 2013. "Characterisation of a nonlinear Leslie matrix model for predicting the dynamics of biological populations in polluted environments: Applications to radioecology," Ecological Modelling, Elsevier, vol. 248(C), pages 174-183.
    8. Erickson, Richard A. & Cox, Stephen B. & Oates, Jessica L. & Anderson, Todd A. & Salice, Christopher J. & Long, Kevin R., 2014. "A Daphnia population model that considers pesticide exposure and demographic stochasticity," Ecological Modelling, Elsevier, vol. 275(C), pages 37-47.
    9. Zhang, Wei & Swinton, Scott M., 2009. "Incorporating natural enemies in an economic threshold for dynamically optimal pest management," Ecological Modelling, Elsevier, vol. 220(9), pages 1315-1324.
    10. Jager, Tjalling & Barsi, Alpar & Hamda, Natnael T. & Martin, Benjamin T. & Zimmer, Elke I. & Ducrot, Virginie, 2014. "Dynamic energy budgets in population ecotoxicology: Applications and outlook," Ecological Modelling, Elsevier, vol. 280(C), pages 140-147.
    11. Jian, Fuji, 2021. "A novel model to quantify ages of organisms and predict development time distribution of their growth stages," Ecological Modelling, Elsevier, vol. 440(C).
    12. de Souza, A.A. & Martins, S.G.F. & Zacarias, M.S., 2009. "Computer simulation applied to the biological control of the insect Aphis gossypii for the parasitoid Lysiphlebus testaceipes," Ecological Modelling, Elsevier, vol. 220(6), pages 756-763.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:211:y:2008:i:1:p:47-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.