A semi-parametric approach to analysis of event duration and prevalence
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2013.05.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bekele, B. Nebiyou & Thall, Peter F., 2004. "Dose-Finding Based on Multiple Toxicities in a Soft Tissue Sarcoma Trial," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 26-35, January.
- Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
- J. P. Fine, 2004. "Temporal process regression," Biometrika, Biometrika Trust, vol. 91(3), pages 683-703, September.
- D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
- Yan, Jun & Fine, Jason P., 2008. "Analysis of Episodic Data With Application to Recurrent Pulmonary Exacerbations in Cystic Fibrosis Patients," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 498-510, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Russell T. Shinohara & Yifei Sun & Mei-Cheng Wang, 2018. "Alternating event processes during lifetimes: population dynamics and statistical inference," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 110-125, January.
- Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
- J. E. Soh & Yijian Huang, 2021. "A varying-coefficient model for gap times between recurrent events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 437-459, July.
- Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
- Jun Yan & Jian Huang, 2009. "Partly Functional Temporal Process Regression with Semiparametric Profile Estimating Functions," Biometrics, The International Biometric Society, vol. 65(2), pages 431-440, June.
- Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
- Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
- Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
- Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
- Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
- Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
- Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
- Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
- Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
- C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
- Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
- D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
- Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
- Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
- Chu-Chih Chen & , Chuan-Pin Lee & Yuan-Horng Yan & Tsun-Jen Cheng & Pranab K. Sen, 2021. "A partial likelihood-based two-dimensional multistate markov model with application to myocardial infarction and stroke recurrence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 282-303, November.
More about this item
Keywords
Prevalence; Recurrent events; Semi-parametric model; Time-varying coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:248-257. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.