IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1681-1691.html

Semi-supervised wavelet shrinkage

Author

Listed:
  • Lee, Kichun
  • Vidakovic, Brani

Abstract

To estimate a possibly multivariate regression function g under the general regression setup, y=g+ϵ, one can use wavelet thresholding as an alternative to conventional nonparametric regression methods. Wavelet thresholding is a simple operation in the wavelet domain that selects a subset of coefficients corresponding to an estimator of g when back-transformed. We propose an enhancement to wavelet thresholding by selecting a subset in a semi-supervised fashion in which the neighboring structure and classification function appropriate for wavelet domains are utilized. Wavelet coefficients are classified into two types: labeled, which have either strong or weak magnitudes, and unlabeled, which have in-between magnitudes. Both are connected to neighboring coefficients and belong to a low-dimensional manifold within the set of all wavelet coefficients. The decision to include a coefficient in the model depends not only on its magnitude but also on the labeled and the unlabeled coefficients from its neighborhood. We discuss the theoretical properties of the method and demonstrate its performance in simulated examples.

Suggested Citation

  • Lee, Kichun & Vidakovic, Brani, 2012. "Semi-supervised wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1681-1691.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1681-1691
    DOI: 10.1016/j.csda.2011.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003677
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Antoniadis, Anestis & Bigot, Jeremie & Sapatinas, Theofanis, 2001. "Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 6(i06).
    2. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    2. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    3. Fryzlewicz, Piotr, 2007. "Bivariate hard thresholding in wavelet function estimation," LSE Research Online Documents on Economics 25219, London School of Economics and Political Science, LSE Library.
    4. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    5. G. E. Salcedo & R. F. Porto & S. Y. Roa & F. R. Momo, 2012. "A wavelet-based time-varying autoregressive model for non-stationary and irregular time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2313-2325, June.
    6. T. W. Randolph & Y. Yasui, 2006. "Multiscale Processing of Mass Spectrometry Data," Biometrics, The International Biometric Society, vol. 62(2), pages 589-597, June.
    7. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    8. Beknazaryan, Aleksandr & Sang, Hailin, 2022. "Nonparametric regression with modified ReLU networks," Statistics & Probability Letters, Elsevier, vol. 190(C).
    9. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    10. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Cai, Zongwu & Ren, Yu & Yang, Bingduo, 2015. "A semiparametric conditional capital asset pricing model," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 117-126.
    12. Tanujit Dey & Kun Ho Kim & Chae Young Lim, 2018. "Bayesian time series regression with nonparametric modeling of autocorrelation," Computational Statistics, Springer, vol. 33(4), pages 1715-1731, December.
    13. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    14. Autin, F. & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Ideal denoising within a family of tree-structured wavelet estimators," LIDAM Discussion Papers ISBA 2011002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    16. Zhang, Shuanglin & Wong, Man-Yu & Zheng, Zhongguo, 2002. "Wavelet Threshold Estimation of a Regression Function with Random Design," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 256-284, February.
    17. Youssef Taleb & Edward A. K. Cohen, 2021. "Multiresolution analysis of point processes and statistical thresholding for Haar wavelet-based intensity estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 395-423, April.
    18. Autin, Florent & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," LIDAM Discussion Papers ISBA 2011021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Jacinta Chan Phooi M’ng & Mohammadali Mehralizadeh, 2016. "Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.
    20. De Canditiis, Daniela, 2014. "A frame based shrinkage procedure for fast oscillating functions," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 142-150.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1681-1691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.