IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p327-344.html
   My bibliography  Save this article

Online wavelet-based density estimation for non-stationary streaming data

Author

Listed:
  • García-Treviño, E.S.
  • Barria, J.A.

Abstract

There has been an important emergence of applications in which data arrives in an online time-varying fashion (e.g. computer network traffic, sensor data, web searches, ATM transactions) and it is not feasible to exchange or to store all the arriving data in traditional database systems to operate on it. For this kind of applications, as it is for traditional static database schemes, density estimation is a fundamental block for data analysis. A novel online approach for probability density estimation based on wavelet bases suitable for applications involving rapidly changing streaming data is presented. The proposed approach is based on a recursive formulation of the wavelet-based orthogonal estimator using a sliding window and includes an optimised procedure for reevaluating only relevant scaling and wavelet functions each time new data items arrive. The algorithm is tested and compared using both simulated and real world data.

Suggested Citation

  • García-Treviño, E.S. & Barria, J.A., 2012. "Online wavelet-based density estimation for non-stationary streaming data," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 327-344.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:327-344
    DOI: 10.1016/j.csda.2011.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003082
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caudle, Kyle A. & Wegman, Edward, 2009. "Nonparametric density estimation of streaming data using orthogonal series," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3980-3986, October.
    2. Masry, Elias, 1994. "Probability density estimation from dependent observations using wavelets orthonormal bases," Statistics & Probability Letters, Elsevier, vol. 21(3), pages 181-194, October.
    3. Pinheiro, Aluisio & Vidakovic, Brani, 1997. "Estimating the square root of a density via compactly supported wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 399-415, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García Treviño, E.S. & Alarcón Aquino, V. & Barria, J.A., 2019. "The radial wavelet frame density estimator," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 111-139.
    2. Cardot, Hervé & Cénac, Peggy & Monnez, Jean-Marie, 2012. "A fast and recursive algorithm for clustering large datasets with k-medians," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1434-1449.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodney V. Fonseca & Aluísio Pinheiro, 2020. "Wavelet estimation of the dimensionality of curve time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1175-1204, October.
    2. Antonio Cosma & Olivier Scaillet & Rainer von Sachs, 2005. "Multiariate Wavelet-based sahpe preserving estimation for dependant observation," FAME Research Paper Series rp144, International Center for Financial Asset Management and Engineering.
    3. García Treviño, E.S. & Alarcón Aquino, V. & Barria, J.A., 2019. "The radial wavelet frame density estimator," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 111-139.
    4. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    5. Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
    6. Marianna Pensky, 2002. "Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 83-99, March.
    7. N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
    8. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    9. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    10. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    11. Sylvain Sardy & Paul Tseng, 2010. "Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 321-337, June.
    12. Kang, Kai & Maroulas, Vasileios & Schizas, Ioannis & Bao, Feng, 2018. "Improved distributed particle filters for tracking in a wireless sensor network," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 90-108.
    13. Christophe Chesneau & Isha Dewan & Hassan Doosti, 2012. "Wavelet linear density estimation for associated stratified size-biased sample," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 429-445.
    14. Neumann, Michael H., 1997. "Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations," SFB 373 Discussion Papers 1997,86, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    15. Angela Montanari & Daniela Calò, 2013. "Model-based clustering of probability density functions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 301-319, September.
    16. Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 161-180, March.
    17. Aya-Moreno, Carlos & Geenens, Gery & Penev, Spiridon, 2018. "Shape-preserving wavelet-based multivariate density estimation," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 30-47.
    18. Marina Vannucci & Brani Vidakovic, 1997. "Preventing the Dirac disaster: Wavelet based density estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 145-159, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:327-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.