IDEAS home Printed from
   My bibliography  Save this article

Stepwise local influence analysis


  • Shi, Lei
  • Huang, Mei


A new method called stepwise local influence analysis is proposed to detect influential observations and to identify masking effects in a dataset. Influential observations are detected step-by-step such that any highly influential observations identified in a previous step are removed from the perturbation in the next step. The process iterates until no further influential observations can be found. It is shown that this new method is very effective to identify the influential observations and has the power to uncover the masking effects. Additionally, the issues of constraints on perturbation vectors and bench-mark determination are discussed. Several examples with regression models and linear mixed models are illustrated for the proposed methodology.

Suggested Citation

  • Shi, Lei & Huang, Mei, 2011. "Stepwise local influence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 973-982, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:973-982

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hong-Tu Zhu & Sik-Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    2. Shi, Lei & Ojeda, Mario Miguel, 2004. "Local influence in multilevel regression for growth curves," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 282-304, November.
    3. Frank Critchley, 2004. "Data-informed influence analysis," Biometrika, Biometrika Trust, vol. 91(1), pages 125-140, March.
    4. Shi, Lei & Chen, Gemai, 2008. "Case deletion diagnostics in multilevel models," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1860-1877, October.
    5. Frank Critchley & Richard A. Atkinson & Guobing Lu & Elenice Biazi, 2001. "Influence analysis based on the case sensitivity function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 307-323.
    6. W.-Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    2. repec:bla:stanee:v:71:y:2017:i:2:p:86-114 is not listed on IDEAS
    3. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    4. Schützenmeister, André & Piepho, Hans-Peter, 2012. "Residual analysis of linear mixed models using a simulation approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1405-1416.
    5. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    6. Shuangzhe Liu & Víctor Leiva & Tiefeng Ma & Alan Welsh, 2016. "Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(2), pages 227-249, June.
    7. Fukang Zhu & Shuangzhe Liu & Lei Shi, 2016. "Local influence analysis for Poisson autoregression with an application to stock transaction data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(1), pages 4-25, February.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:973-982. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.