IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p1895-1905.html
   My bibliography  Save this article

Testing and estimation of purely nonparametric effects in repeated measures designs

Author

Listed:
  • Konietschke, F.
  • Bathke, A.C.
  • Hothorn, L.A.
  • Brunner, E.

Abstract

The several sample case of the so-called nonparametric Behrens-Fisher problem in repeated measures designs is considered. That is, even under the null hypothesis, the marginal distribution functions in the different groups may have different shapes, and are not assumed to be equal. Moreover, the continuity of the marginal distribution functions is not required so that data with ties and, particularly, ordered categorical data are covered by this model. A multiple relative treatment effect is defined which can be estimated by using the mid-ranks of the observations within pairwise samples. The asymptotic distribution of this estimator is derived, along with a consistent estimator of its asymptotic covariance matrix. In addition, a multiple contrast test and related simultaneous confidence intervals for the relative marginal effects are derived and compared to rank-based Wald-type and ANOVA-type statistics. Simulations show that the ANOVA-type statistic and the multiple contrast test appear to maintain the pre-assigned level of the test quite accurately (even for rather small sample sizes) while the Wald-type statistic leads, as expected, to somewhat liberal decisions. Regarding the power, none of the statistics is uniformly superior. A real data set illustrates the application.

Suggested Citation

  • Konietschke, F. & Bathke, A.C. & Hothorn, L.A. & Brunner, E., 2010. "Testing and estimation of purely nonparametric effects in repeated measures designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1895-1905, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1895-1905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00084-8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edgar Brunner & Madan Puri, 2001. "Nonparametric methods in factorial designs," Statistical Papers, Springer, vol. 42(1), pages 1-52, January.
    2. Vicente Núñez-Antón & Juan Rodríguez-Póo & Philippe Vieu, 1999. "Longitudinal data with nonstationary errors: a nonparametric three-stage approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 201-231, June.
    3. Brunner, Edgar & Munzel, Ulrich & Puri, Madan L., 1999. "Rank-Score Tests in Factorial Designs with Repeated Measures," Journal of Multivariate Analysis, Elsevier, vol. 70(2), pages 286-317, August.
    4. Bathke, Arne C. & Schabenberger, Oliver & Tobias, Randall D. & Madden, Laurence V., 2009. "Greenhouse–Geisser Adjustment and the ANOVA-Type Statistic: Cousins or Twins?," The American Statistician, American Statistical Association, vol. 63(3), pages 239-246.
    5. Munzel, Ullrich, 1999. "Linear rank score statistics when ties are present," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 389-395, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    2. repec:bla:jorssb:v:79:y:2017:i:5:p:1463-1485 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1895-1905. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.