IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v208y2025ics016794732500043x.html
   My bibliography  Save this article

Regression analysis of elliptically symmetric directional data

Author

Listed:
  • Yu, Zehao
  • Huang, Xianzheng

Abstract

A comprehensive toolkit is developed for regression analysis of directional data based on a flexible class of angular Gaussian distributions. Informative testing procedures to assess rotational symmetry around the mean direction, and the dependence of model parameters on covariates are proposed. Bootstrap-based algorithms are provided to assess the significance of the proposed test statistics. Moreover, a prediction region that achieves the smallest volume in a class of ellipsoidal prediction regions of the same coverage probability is constructed. The efficacy of these inference procedures is demonstrated in simulation experiments. Finally, this new toolkit is used to analyze directional data originating from a hydrology study and a bioinformatics application.

Suggested Citation

  • Yu, Zehao & Huang, Xianzheng, 2025. "Regression analysis of elliptically symmetric directional data," Computational Statistics & Data Analysis, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:csdana:v:208:y:2025:i:c:s016794732500043x
    DOI: 10.1016/j.csda.2025.108167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732500043X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo García-Portugués & Davy Paindaveine & Thomas Verdebout, 2020. "On Optimal Tests for Rotational Symmetry Against New Classes of Hyperspherical Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1873-1887, December.
    2. J. L. Scealy & A. H. Welsh, 2017. "A Directional Mixed Effects Model for Compositional Expenditure Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 24-36, January.
    3. Eduardo Garcia-Portugues & Davy Paindaveine & Thomas Verdebout, 2020. "On optimal tests for rotational symmetry against new classes of hyperspherical distributions," Post-Print hal-03169388, HAL.
    4. Mathias Drton & Benjamin Williams, 2011. "Quantifying the failure of bootstrap likelihood ratio tests," Biometrika, Biometrika Trust, vol. 98(4), pages 919-934.
    5. Ulric Lund, 1999. "Least circular distance regression for directional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 723-733.
    6. Marcus J. Claesson & Ian B. Jeffery & Susana Conde & Susan E. Power & Eibhlís M. O’Connor & Siobhán Cusack & Hugh M. B. Harris & Mairead Coakley & Bhuvaneswari Lakshminarayanan & Orla O’Sullivan & Ger, 2012. "Gut microbiota composition correlates with diet and health in the elderly," Nature, Nature, vol. 488(7410), pages 178-184, August.
    7. J. L. Scealy & A. H. Welsh, 2011. "Regression for compositional data by using distributions defined on the hypersphere," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 351-375, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Fernández-de-Marcos & Eduardo García-Portugués, 2023. "On new omnibus tests of uniformity on the hypersphere," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1508-1529, December.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Janice L. Scealy, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 68-70, March.
    4. Maxime Boucher & Andrea Meilán-Vila & Vivien Meurice & Thomas Verdebout, 2025. "On a modified Watson test for spherical location," Statistical Papers, Springer, vol. 66(4), pages 1-12, June.
    5. Davy Paindaveine & Joséa Rasoafaraniaina & Thomas Verdebout, 2021. "Preliminary test estimation in uniformly locally asymptotically normal models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 689-707, June.
    6. Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.
    7. Xu, Danli & Wang, Yong, 2023. "Density estimation for spherical data using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    8. Ludwig Baringhaus & Rudolf Grübel, 2024. "Discrete mixture representations of spherical distributions," Statistical Papers, Springer, vol. 65(2), pages 557-596, April.
    9. Kim, Byungwon & Schulz, Jörn & Jung, Sungkyu, 2020. "Kurtosis test of modality for rotationally symmetric distributions on hyperspheres," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    10. Jeong Min Jeon & Ingrid Van Keilegom, 2024. "Density estimation and regression analysis on hyperspheres in the presence of measurement error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 513-556, June.
    11. Dabo-Niang, Sophie & Thiam, Baba & Verdebout, Thomas, 2022. "Asymptotic efficiency of some nonparametric tests for location on hyperspheres," Statistics & Probability Letters, Elsevier, vol. 188(C).
    12. María Alonso‐Pena & Gerda Claeskens & Irène Gijbels, 2024. "Nonparametric estimation of densities on the hypersphere using a parametric guide," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 956-986, September.
    13. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    14. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    15. Chunlin Wang & Paul Marriott & Pengfei Li, 2022. "A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 809-831, October.
    16. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    17. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    18. Janice L. Scealy & David Heslop & Jia Liu & Andrew T. A. Wood, 2022. "Directions Old and New: Palaeomagnetism and Fisher (1953) Meet Modern Statistics," International Statistical Review, International Statistical Institute, vol. 90(2), pages 237-258, August.
    19. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    20. Zhu, Changbo & Müller, Hans-Georg, 2024. "Spherical autoregressive models, with application to distributional and compositional time series," Journal of Econometrics, Elsevier, vol. 239(2).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:208:y:2025:i:c:s016794732500043x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.