Computation of c-optimal designs for models with correlated observations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2016.10.019
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Kenward, Michael G. & Roger, James H., 2009. "An improved approximation to the precision of fixed effects from restricted maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2583-2595, May.
- Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
- Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
- Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2016. "Optimal designs for regression models with autoregressive errors," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 107-115.
- Tommasi, C. & Rodríguez-Díaz, J.M. & Santos-Martín, M.T., 2014. "Integral approximations for computing optimum designs in random effects logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1208-1220.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
- Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
- Nguyen Ngoc Thach, 2023. "Applying Monte Carlo Simulations to a Small Data Analysis of a Case of Economic Growth in COVID-19 Times," SAGE Open, , vol. 13(2), pages 21582440231, June.
- Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
- Elham Yousefi & Werner G. Müller, 2023. "Impact of the Error Structure on the Design and Analysis of Enzyme Kinetic Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 31-56, April.
- Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
- Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2014. "R-optimal designs in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 127-132.
- Vembye, Mikkel Helding & Pustejovsky, James E & Pigott, Terri, 2022. "Power Approximations for Meta-Analysis of Dependent Effect Sizes," MetaArXiv 6tp9y, Center for Open Science.
- Ulrike Graßhoff & Heinz Holling & Rainer Schwabe, 2012. "Optimal Designs for the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 710-723, October.
- Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
- Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
- Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- de Breij, Sascha & Huisman, Martijn & Deeg, Dorly J.H., 2020. "Macro-level determinants of post-retirement health and health inequalities: A multilevel analysis of 18 European countries," Social Science & Medicine, Elsevier, vol. 245(C).
- He, Lei & He, Daojiang, 2020. "R-optimal designs for individual prediction in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
- Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.
- Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
- Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
- Yu. D. Grigoriev & V. B. Melas & P. V. Shpilev, 2021. "Excess and saturated D-optimal designs for the rational model," Statistical Papers, Springer, vol. 62(3), pages 1387-1405, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:287-296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp287-296.html