IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp316-329.html

A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes

Author

Listed:
  • He, Heping
  • Severini, Thomas A.

Abstract

Consider a semiparametric regression model in which the mean function depends on a finite-dimensional regression parameter as the parameter of interest and an unknown function as a nuisance parameter. A method of inference in such models is proposed, using a type of integrated likelihood in which the unknown function is eliminated by averaging with respect to a given distribution, which we take to be a Gaussian process with a covariance function chosen to reflect the assumptions about the function. This approach is easily implemented and can be applied to a wide range of models using the same basic methodology. The consistency and asymptotic normality of the estimator of the parameter of interest are established under mild conditions. The proposed method is illustrated on several examples.

Suggested Citation

  • He, Heping & Severini, Thomas A., 2016. "A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 316-329.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:316-329
    DOI: 10.1016/j.csda.2016.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301128
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    2. Thomas A. Severini, 2007. "Integrated likelihood functions for non-Bayesian inference," Biometrika, Biometrika Trust, vol. 94(3), pages 529-542.
    3. H. He & T. Severini, 2014. "Integrated likelihood inference in semiparametric regression models," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 185-199, August.
    4. Choi, Taeryon & Lee, Jaeyong & Roy, Anindya, 2009. "A note on the Bayes factor in a semiparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1316-1327, July.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    6. Weixin Yao & Runze Li, 2013. "New local estimation procedure for a non-parametric regression function for longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 123-138, January.
    7. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan Zheng & Noel Cadigan, 2025. "Improved confidence intervals for nonlinear mixed-effects and nonparametric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(1), pages 105-126, February.
    2. Sandra De Iaco & Donato Posa & Claudia Cappello & Sabrina Maggio, 2021. "On Some Characteristics of Gaussian Covariance Functions," International Statistical Review, International Statistical Institute, vol. 89(1), pages 36-53, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    2. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    3. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    4. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    6. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    7. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    8. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Seebens, Holger, 2009. "Child Welfare and Old-Age Security in Female Headed Households in Tanzania," IZA Discussion Papers 3929, Institute of Labor Economics (IZA).
    10. Arūnas P. Verbyla & Joanne Faveri & John D. Wilkie & Tom Lewis, 2018. "Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 478-508, December.
    11. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    12. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    13. repec:plo:pone00:0212565 is not listed on IDEAS
    14. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    15. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Yichen Gao & Yu Zhang & Ximing Wu, 2015. "Penalized exponential series estimation of copula densities with an application to intergenerational dependence of body mass index," Empirical Economics, Springer, vol. 48(1), pages 61-81, February.
    17. Jaime Pinilla & Miguel Negrín, 2021. "Non-Parametric Generalized Additive Models as a Tool for Evaluating Policy Interventions," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    18. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    19. Vahid Goodarzi Vanani & Davood Shahsavani & Mohammad Kazemi, 2025. "A robust partial linear model combining modified Huber loss function and variable selection," Statistical Papers, Springer, vol. 66(6), pages 1-28, October.
    20. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    21. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:316-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.