IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v89y2016icp290-294.html
   My bibliography  Save this article

The eccentric connectivity polynomial of two classes of nanotubes

Author

Listed:
  • Gao, Wei
  • Wang, Weifan

Abstract

In theoretical chemistry, the eccentric connectivity index ξ(G) of a molecular graph G was introduced as ξ(G)=∑v∈V(G)d(v)ɛ(v) where d(v) expresses the degree of vertex v and ɛ(v) is the largest distance between v and any other vertex of G. The corresponding eccentric connectivity polynomial is denoted by ξ(G,x)=∑v∈V(G)d(v)xɛ(v). In this paper, we present the exact expressions of eccentric connectivity polynomial for V-phenylenic nanotubes and Zig-Zag polyhex nanotubes.

Suggested Citation

  • Gao, Wei & Wang, Weifan, 2016. "The eccentric connectivity polynomial of two classes of nanotubes," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 290-294.
  • Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:290-294
    DOI: 10.1016/j.chaos.2015.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915004002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Gao & Li Liang & Wei Gao, 2014. "Randic Index and Edge Eccentric Connectivity Index of Certain Special Molecular Graphs," International Journal of Chemistry and Materials Research, Conscientia Beam, vol. 2(8), pages 81-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Tlili, Iskander, 2020. "Modeling of solar system with helical swirl flow device considering nanofluid turbulent forced convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Tran Dinh, Manh & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Al-Jahmany, Yahya Yaseen Yahya & Nguyen-Thoi, Trung, 2020. "Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Mirparizi, M. & Fotuhi, A.R., 2020. "Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    9. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    10. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Gao, Wei & Farahani, Mohammad Reza & Wang, Shaohui & Husin, Mohamad Nazri, 2017. "On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 11-17.
    12. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Nguyen, Truong Khang & Soomro, Feroz Ahmed & Ali, Jagar A. & Haq, Rizwan Ul & Sheikholeslami, M. & Shafee, Ahmad, 2020. "Heat transfer of ethylene glycol-Fe3O4 nanofluid enclosed by curved porous cavity including electric field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:290-294. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.