IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v83y2016icp178-185.html
   My bibliography  Save this article

Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes

Author

Listed:
  • Erkaymaz, Okan
  • Ozer, Mahmut

Abstract

Artificial intelligent systems have been widely used for diagnosis of diseases. Due to their importance, new approaches are attempted consistently to increase the performance of these systems. In this study, we introduce a new approach for diagnosis of diabetes based on the Small-World Feed Forward Artificial Neural Network (SW- FFANN). We construct the small-world network by following the Watts–Strogatz approach, and use this architecture for classifying the diabetes, and compare its performance with that of the regular or the conventional FFANN. We show that the classification performance of the SW-FFANN is better than that of the conventional FFANN. The SW-FFANN approach also results in both the highest output correlation and the best output error parameters. We also perform the accuracy analysis and show that SW-FFANN approach exhibits the highest classifier performance.

Suggested Citation

  • Erkaymaz, Okan & Ozer, Mahmut, 2016. "Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 178-185.
  • Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:178-185
    DOI: 10.1016/j.chaos.2015.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791500394X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Ergin & Uzuntarla, Muhammet & Ozer, Mahmut & Perc, Matjaž, 2013. "Stochastic resonance in hybrid scale-free neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5735-5741.
    2. Xiaohu Li & Feng Xu & Jinhua Zhang & Sunan Wang, 2013. "A Multilayer Feed Forward Small-World Neural Network Controller and Its Application on Electrohydraulic Actuation System," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaya, Ceren & Erkaymaz, Okan & Ayar, Orhan & Özer, Mahmut, 2018. "Impact of hybrid neural network on the early diagnosis of diabetic retinopathy disease from video-oculography signals," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 164-174.
    2. Scabini, Leonardo F.S. & Bruno, Odemir M., 2023. "Structure and performance of fully connected neural networks: Emerging complex network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    3. He, Haoming & Xiao, Min & Lu, Yunxiang & Wang, Zhen & Tao, Binbin, 2023. "Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Soriano-Sánchez, A.G. & Posadas-Castillo, C., 2018. "Smart pattern to generate small–world networks," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 415-422.
    5. Matjaž Perc & Mahmut Ozer & Janja Hojnik, 2019. "Social and juristic challenges of artificial intelligence," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    2. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    3. Daewon Chung & Insoo Sohn, 2023. "Neural Network Optimization Based on Complex Network Theory: A Survey," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    4. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.
    6. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    7. Wang, Jiang & Guo, Xinmeng & Yu, Haitao & Liu, Chen & Deng, Bin & Wei, Xile & Chen, Yingyuan, 2014. "Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 40-48.
    8. Deng, Bin & Wang, Lin & Wang, Jiang & Wei, Xi-le & Yu, Hai-tao, 2014. "Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 30-39.
    9. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    10. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    11. Wu, Fuqiang & Wang, Chunni & Jin, Wuyin & Ma, Jun, 2017. "Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 81-88.
    12. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    13. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    15. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    16. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    18. Akhmet, Marat & Tleubergenova, Madina & Zhamanshin, Akylbek, 2024. "Cohen-Grossberg neural networks with unpredictable and Poisson stable dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    20. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:178-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.