IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i11p929-933.html
   My bibliography  Save this article

Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons

Author

Listed:
  • Moujahid, A.
  • d’Anjou, A.
  • Torrealdea, F.J.
  • Torrealdea, F.

Abstract

The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behavior is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron.

Suggested Citation

  • Moujahid, A. & d’Anjou, A. & Torrealdea, F.J. & Torrealdea, F., 2011. "Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 929-933.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:11:p:929-933
    DOI: 10.1016/j.chaos.2011.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911001330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Dan & Zhao, Song & Luo, Xiaoyuan & Yuan, Yi, 2021. "Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with magneto-acoustical stimulation input," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    4. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Moujahid, A. & Vadillo, F., 2022. "Energy analysis of bursting Hindmarsh-Rose neurons with time-delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:11:p:929-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.